IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-27379-1.html
   My bibliography  Save this article

Global patterns of potential future plant diversity hidden in soil seed banks

Author

Listed:
  • Xuejun Yang

    (Institute of Botany, Chinese Academy of Sciences)

  • Carol C. Baskin

    (University of Kentucky
    University of Kentucky)

  • Jerry M. Baskin

    (University of Kentucky)

  • Robin J. Pakeman

    (The James Hutton Institute, Craigiebuckler)

  • Zhenying Huang

    (Institute of Botany, Chinese Academy of Sciences)

  • Ruiru Gao

    (Shanxi Normal University)

  • Johannes H. C. Cornelissen

    (VU University)

Abstract

Soil seed banks represent a critical but hidden stock for potential future plant diversity on Earth. Here we compiled and analyzed a global dataset consisting of 15,698 records of species diversity and density for soil seed banks in natural plant communities worldwide to quantify their environmental determinants and global patterns. Random forest models showed that absolute latitude was an important predictor for diversity of soil seed banks. Further, climate and soil were the major determinants of seed bank diversity, while net primary productivity and soil characteristics were the main predictors of seed bank density. Moreover, global mapping revealed clear spatial patterns for soil seed banks worldwide; for instance, low densities may render currently species-rich low latitude biomes (such as tropical rain-forests) less resilient to major disturbances. Our assessment provides quantitative evidence of how environmental conditions shape the distribution of soil seed banks, which enables a more accurate prediction of the resilience and vulnerabilities of plant communities and biomes under global changes.

Suggested Citation

  • Xuejun Yang & Carol C. Baskin & Jerry M. Baskin & Robin J. Pakeman & Zhenying Huang & Ruiru Gao & Johannes H. C. Cornelissen, 2021. "Global patterns of potential future plant diversity hidden in soil seed banks," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27379-1
    DOI: 10.1038/s41467-021-27379-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-27379-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-27379-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. B. S. Steidinger & T. W. Crowther & J. Liang & M. E. Nuland & G. D. A. Werner & P. B. Reich & G. J. Nabuurs & S. de-Miguel & M. Zhou & N. Picard & B. Herault & X. Zhao & C. Zhang & D. Routh & K. G. Pe, 2019. "Author Correction: Climatic controls of decomposition drive the global biogeography of forest-tree symbioses," Nature, Nature, vol. 571(7765), pages 8-8, July.
    2. B. S. Steidinger & T. W. Crowther & J. Liang & M. E. Nuland & G. D. A. Werner & P. B. Reich & G. J. Nabuurs & S. de-Miguel & M. Zhou & N. Picard & B. Herault & X. Zhao & C. Zhang & D. Routh & K. G. Pe, 2019. "Climatic controls of decomposition drive the global biogeography of forest-tree symbioses," Nature, Nature, vol. 569(7756), pages 404-408, May.
    3. Pierre Ploton & Frédéric Mortier & Maxime Réjou-Méchain & Nicolas Barbier & Nicolas Picard & Vivien Rossi & Carsten Dormann & Guillaume Cornu & Gaëlle Viennois & Nicolas Bayol & Alexei Lyapustin & Syl, 2020. "Spatial validation reveals poor predictive performance of large-scale ecological mapping models," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fangkai Zhao & Lei Yang & Haw Yen & Qingyu Feng & Min Li & Liding Chen, 2023. "Reducing risks of antibiotics to crop production requires land system intensification within thresholds," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Anu Eskelinen & Maria-Theresa Jessen & Hector A. Bahamonde & Jonathan D. Bakker & Elizabeth T. Borer & Maria C. Caldeira & W. Stanley Harpole & Meiyu Jia & Luciola S. Lannes & Carla Nogueira & Harry O, 2023. "Herbivory and nutrients shape grassland soil seed banks," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guoyong Yan & Chunnan Fan & Junqiang Zheng & Guancheng Liu & Jinghua Yu & Zhongling Guo & Wei Cao & Lihua Wang & Wenjie Wang & Qingfan Meng & Junhui Zhang & Yan Li & Jinping Zheng & Xiaoyang Cui & Xia, 2024. "Forest carbon stocks increase with higher dominance of ectomycorrhizal trees in high latitude forests," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Fantin Mesny & Shingo Miyauchi & Thorsten Thiergart & Brigitte Pickel & Lea Atanasova & Magnus Karlsson & Bruno Hüttel & Kerrie W. Barry & Sajeet Haridas & Cindy Chen & Diane Bauer & William Andreopou, 2021. "Genetic determinants of endophytism in the Arabidopsis root mycobiome," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    3. Gábor Pete & Ádám Timár & Sigurdur Örn Stefánsson & Ivan Bonamassa & Márton Pósfai, 2024. "Physical networks as network-of-networks," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    4. Pretzsch, Hans, 2022. "Facilitation and competition reduction in tree species mixtures in Central Europe: Consequences for growth modeling and forest management," Ecological Modelling, Elsevier, vol. 464(C).
    5. Lingyan Zhou & Xuhui Zhou & Yanghui He & Yuling Fu & Zhenggang Du & Meng Lu & Xiaoying Sun & Chenghao Li & Chunyan Lu & Ruiqiang Liu & Guiyao Zhou & Shahla Hosseni Bai & Madhav P. Thakur, 2022. "Global systematic review with meta-analysis shows that warming effects on terrestrial plant biomass allocation are influenced by precipitation and mycorrhizal association," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Angélica Ochoa-Beltrán & Johanna Andrea Martínez-Villa & Peter G. Kennedy & Beatriz Salgado-Negret & Alvaro Duque, 2021. "Plant Trait Assembly in Species-Rich Forests at Varying Elevations in the Northwest Andes of Colombia," Land, MDPI, vol. 10(10), pages 1-15, October.
    7. Mark A. Adams & Mathias Neumann, 2023. "Litter accumulation and fire risks show direct and indirect climate-dependence at continental scale," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Tarquin Netherway & Jan Bengtsson & Franz Buegger & Joachim Fritscher & Jane Oja & Karin Pritsch & Falk Hildebrand & Eveline J. Krab & Mohammad Bahram, 2024. "Pervasive associations between dark septate endophytic fungi with tree root and soil microbiomes across Europe," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    9. Maoyuan Feng & Shushi Peng & Yilong Wang & Philippe Ciais & Daniel S. Goll & Jinfeng Chang & Yunting Fang & Benjamin Z. Houlton & Gang Liu & Yan Sun & Yi Xi, 2023. "Overestimated nitrogen loss from denitrification for natural terrestrial ecosystems in CMIP6 Earth System Models," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    10. Shan Luo & Richard P. Phillips & Insu Jo & Songlin Fei & Jingjing Liang & Bernhard Schmid & Nico Eisenhauer, 2023. "Higher productivity in forests with mixed mycorrhizal strategies," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    11. Ali Ismaeel & Amos P. K. Tai & Erone Ghizoni Santos & Heveakore Maraia & Iris Aalto & Jan Altman & Jiří Doležal & Jonas J. Lembrechts & José Luís Camargo & Juha Aalto & Kateřina Sam & Lair Cristina Av, 2024. "Patterns of tropical forest understory temperatures," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    12. Jonas Schöley, 2021. "The centered ternary balance scheme: A technique to visualize surfaces of unbalanced three-part compositions," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 44(19), pages 443-458.
    13. Haider, Saira M. & Benscoter, Allison M. & Pearlstine, Leonard & D'Acunto, Laura E. & Romañach, Stephanie S., 2021. "Landscape-scale drivers of endangered Cape Sable Seaside Sparrow (Ammospiza maritima mirabilis) presence using an ensemble modeling approach," Ecological Modelling, Elsevier, vol. 461(C).
    14. Marsh, Charles J. & Gavish, Yoni & Kuemmerlen, Mathias & Stoll, Stefan & Haase, Peter & Kunin, William E., 2023. "SDM profiling: A tool for assessing the information-content of sampled and unsampled locations for species distribution models," Ecological Modelling, Elsevier, vol. 475(C).
    15. Gustavo Larrea‐Gallegos & Ian Vázquez‐Rowe, 2022. "Exploring machine learning techniques to predict deforestation to enhance the decision‐making of road construction projects," Journal of Industrial Ecology, Yale University, vol. 26(1), pages 225-239, February.
    16. Wan-Yi Zhao & Zhong-Cheng Liu & Shi Shi & Jie-Lan Li & Ke-Wang Xu & Kang-You Huang & Zhi-Hui Chen & Ya-Rong Wang & Cui-Ying Huang & Yan Wang & Jing-Rui Chen & Xian-Ling Sun & Wen-Xing Liang & Wei Guo , 2024. "Landform and lithospheric development contribute to the assembly of mountain floras in China," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    17. Katerina Georgiou & Robert B. Jackson & Olga Vindušková & Rose Z. Abramoff & Anders Ahlström & Wenting Feng & Jennifer W. Harden & Adam F. A. Pellegrini & H. Wayne Polley & Jennifer L. Soong & William, 2022. "Global stocks and capacity of mineral-associated soil organic carbon," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    18. Hanna Meyer & Edzer Pebesma, 2022. "Machine learning-based global maps of ecological variables and the challenge of assessing them," Nature Communications, Nature, vol. 13(1), pages 1-4, December.
    19. Anton M. Potapov & Carlos A. Guerra & Johan Hoogen & Anatoly Babenko & Bruno C. Bellini & Matty P. Berg & Steven L. Chown & Louis Deharveng & Ľubomír Kováč & Natalia A. Kuznetsova & Jean-François Pong, 2023. "Globally invariant metabolism but density-diversity mismatch in springtails," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    20. Temesgen Alemayehu Abera & Janne Heiskanen & Eduardo Eiji Maeda & Mohammed Ahmed Muhammed & Netra Bhandari & Ville Vakkari & Binyam Tesfaw Hailu & Petri K. E. Pellikka & Andreas Hemp & Pieter G. Zyl &, 2024. "Deforestation amplifies climate change effects on warming and cloud level rise in African montane forests," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27379-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.