IDEAS home Printed from https://ideas.repec.org/a/bla/inecol/v26y2022i1p225-239.html
   My bibliography  Save this article

Exploring machine learning techniques to predict deforestation to enhance the decision‐making of road construction projects

Author

Listed:
  • Gustavo Larrea‐Gallegos
  • Ian Vázquez‐Rowe

Abstract

Land use changes (LUCs), which are defined as the modification in the use of land due to anthropogenic activities, are important sources of GHG emissions. In this context, understanding future trends of LUCs, such as deforestation, in a spatial manner is relevant. The main objective of this study is to generate a deforestation prediction model for a given period of time (i.e., 2002–2017 and 2010–2017) to estimate the potential carbon emissions associated with different anthropogenic variables in the Peruvian Amazon using machine learning (ML) algorithms. This study was motivated in the analysis of a road project previously studied using life cycle assessment (LCA). Models using neural networks and random forest algorithms were trained and evaluated in a fully cloud‐based environment using Google Earth Engine. ML‐related results demonstrated that random forest is a quicker and straightforward response to model the system under study, especially considering that data do not require additional processing during the modeling and prediction stages. Predicted results suggest that expected road expansion may be related to considerable carbon emissions in the future. Calculated values are relevant especially if the mitigation efforts that Peru has complied with in the Paris Agreement are considered. The increased complexity of the framework is justified since it allows identifying the location of hotspots and may potentially complement the utility of LCA in policy support in the areas of territorial planning and tropical road expansion.

Suggested Citation

  • Gustavo Larrea‐Gallegos & Ian Vázquez‐Rowe, 2022. "Exploring machine learning techniques to predict deforestation to enhance the decision‐making of road construction projects," Journal of Industrial Ecology, Yale University, vol. 26(1), pages 225-239, February.
  • Handle: RePEc:bla:inecol:v:26:y:2022:i:1:p:225-239
    DOI: 10.1111/jiec.13185
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jiec.13185
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jiec.13185?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. De Rosa, Michele, 2018. "Land Use and Land-use Changes in Life Cycle Assessment: Green Modelling or Black Boxing?," Ecological Economics, Elsevier, vol. 144(C), pages 73-81.
    2. Miranda, Juan José & Corral, Leonardo & Blackman, Allen & Asner, Gregory & Lima, Eirivelthon, 2016. "Effects of Protected Areas on Forest Cover Change and Local Communities: Evidence from the Peruvian Amazon," World Development, Elsevier, vol. 78(C), pages 288-307.
    3. Robert Pontius & Wideke Boersma & Jean-Christophe Castella & Keith Clarke & Ton Nijs & Charles Dietzel & Zengqiang Duan & Eric Fotsing & Noah Goldstein & Kasper Kok & Eric Koomen & Christopher Lippitt, 2008. "Comparing the input, output, and validation maps for several models of land change," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 42(1), pages 11-37, March.
    4. Xiaobo Xue Romeiko & Zhijian Guo & Yulei Pang & Eun Kyung Lee & Xuesong Zhang, 2020. "Comparing Machine Learning Approaches for Predicting Spatially Explicit Life Cycle Global Warming and Eutrophication Impacts from Corn Production," Sustainability, MDPI, vol. 12(4), pages 1-19, February.
    5. Meyer, Hanna & Reudenbach, Christoph & Wöllauer, Stephan & Nauss, Thomas, 2019. "Importance of spatial predictor variable selection in machine learning applications – Moving from data reproduction to spatial prediction," Ecological Modelling, Elsevier, vol. 411(C).
    6. Pierre Ploton & Frédéric Mortier & Maxime Réjou-Méchain & Nicolas Barbier & Nicolas Picard & Vivien Rossi & Carsten Dormann & Guillaume Cornu & Gaëlle Viennois & Nicolas Bayol & Alexei Lyapustin & Syl, 2020. "Spatial validation reveals poor predictive performance of large-scale ecological mapping models," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wadoux, Alexandre M.J.-C. & Heuvelink, Gerard B.M. & de Bruin, Sytze & Brus, Dick J., 2021. "Spatial cross-validation is not the right way to evaluate map accuracy," Ecological Modelling, Elsevier, vol. 457(C).
    2. Sims, Katharine R.E. & Alix-Garcia, Jennifer M., 2017. "Parks versus PES: Evaluating direct and incentive-based land conservation in Mexico," Journal of Environmental Economics and Management, Elsevier, vol. 86(C), pages 8-28.
    3. Yang, Yuanyuan & Bao, Wenkai & Liu, Yansui, 2020. "Scenario simulation of land system change in the Beijing-Tianjin-Hebei region," Land Use Policy, Elsevier, vol. 96(C).
    4. Youjung Kim & Galen Newman, 2019. "Climate Change Preparedness: Comparing Future Urban Growth and Flood Risk in Amsterdam and Houston," Sustainability, MDPI, vol. 11(4), pages 1-24, February.
    5. Hyeseon Choi & Nash Jett DG. Reyes & Minsu Jeon & Lee-Hyung Kim, 2021. "Constructed Wetlands in South Korea: Current Status and Performance Assessment," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
    6. Aritta Suwarno & Meine van Noordwijk & Hans-Peter Weikard & Desi Suyamto, 2018. "Indonesia’s forest conversion moratorium assessed with an agent-based model of Land-Use Change and Ecosystem Services (LUCES)," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(2), pages 211-229, February.
    7. Yuanyuan Yang & Shuwen Zhang & Jiuchun Yang & Xiaoshi Xing & Dongyan Wang, 2015. "Using a Cellular Automata-Markov Model to Reconstruct Spatial Land-Use Patterns in Zhenlai County, Northeast China," Energies, MDPI, vol. 8(5), pages 1-21, May.
    8. Ali Ismaeel & Amos P. K. Tai & Erone Ghizoni Santos & Heveakore Maraia & Iris Aalto & Jan Altman & Jiří Doležal & Jonas J. Lembrechts & José Luís Camargo & Juha Aalto & Kateřina Sam & Lair Cristina Av, 2024. "Patterns of tropical forest understory temperatures," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    9. Francisco B. Galarza & Joanna Kámiche Zegarra & Rosario Gómez, 2023. "Roads and Deforestation: Do Local Institutions Matter?," Working Papers 192, Peruvian Economic Association.
    10. Bonoua Faye & Guoming Du & Edmée Mbaye & Chang’an Liang & Tidiane Sané & Ruhao Xue, 2023. "Assessing the Spatial Agricultural Land Use Transition in Thiès Region, Senegal, and Its Potential Driving Factors," Land, MDPI, vol. 12(4), pages 1-20, March.
    11. Estifanos, Tafesse Kefyalew & Polyakov, Maksym & Pandit, Ram & Hailu, Atakelty & Burton, Michael, 2020. "The impact of protected areas on the rural households’ incomes in Ethiopia," Land Use Policy, Elsevier, vol. 91(C).
    12. Rifat, Shaikh Abdullah Al & Liu, Weibo, 2022. "Predicting future urban growth scenarios and potential urban flood exposure using Artificial Neural Network-Markov Chain model in Miami Metropolitan Area," Land Use Policy, Elsevier, vol. 114(C).
    13. Jing Yang & Feng Shi & Yizhong Sun & Jie Zhu, 2019. "A Cellular Automata Model Constrained by Spatiotemporal Heterogeneity of the Urban Development Strategy for Simulating Land-use Change: A Case Study in Nanjing City, China," Sustainability, MDPI, vol. 11(15), pages 1-19, July.
    14. Begazo Curie, Karin & Mertens, Kewan & Vranken, Liesbet, 2021. "Tenure regimes and remoteness: When does forest income reduce poverty and inequality? A case study from the Peruvian Amazon," Forest Policy and Economics, Elsevier, vol. 128(C).
    15. Shiva Zargar & Yuan Yao & Qingshi Tu, 2022. "A review of inventory modeling methods for missing data in life cycle assessment," Journal of Industrial Ecology, Yale University, vol. 26(5), pages 1676-1689, October.
    16. Brian Pickard & Joshua Gray & Ross Meentemeyer, 2017. "Comparing Quantity, Allocation and Configuration Accuracy of Multiple Land Change Models," Land, MDPI, vol. 6(3), pages 1-21, August.
    17. Auliz-Ortiz, Daniel Martín & Arroyo-Rodríguez, Víctor & Mendoza, Eduardo & Martínez-Ramos, Miguel, 2023. "Are there trade-offs between conservation and development caused by Mexican protected areas?," Land Use Policy, Elsevier, vol. 127(C).
    18. Ju-Sung Lee & Tatiana Filatova & Arika Ligmann-Zielinska & Behrooz Hassani-Mahmooei & Forrest Stonedahl & Iris Lorscheid & Alexey Voinov & J. Gareth Polhill & Zhanli Sun & Dawn C. Parker, 2015. "The Complexities of Agent-Based Modeling Output Analysis," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 18(4), pages 1-4.
    19. Yaotao Xu & Peng Li & Jinjin Pan & Yi Zhang & Xiaohu Dang & Xiaoshu Cao & Junfang Cui & Zhi Yang, 2022. "Eco-Environmental Effects and Spatial Heterogeneity of “Production-Ecology-Living” Land Use Transformation: A Case Study for Ningxia, China," Sustainability, MDPI, vol. 14(15), pages 1-20, August.
    20. Ota, Tetsuji & Lonn, Pichdara & Mizoue, Nobuya, 2020. "A country scale analysis revealed effective forest policy affecting forest cover changes in Cambodia," Land Use Policy, Elsevier, vol. 95(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:26:y:2022:i:1:p:225-239. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.