IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-27366-6.html
   My bibliography  Save this article

Deep neural network models reveal interplay of peripheral coding and stimulus statistics in pitch perception

Author

Listed:
  • Mark R. Saddler

    (MIT
    MIT
    MIT)

  • Ray Gonzalez

    (MIT
    MIT
    MIT)

  • Josh H. McDermott

    (MIT
    MIT
    MIT
    Harvard University)

Abstract

Perception is thought to be shaped by the environments for which organisms are optimized. These influences are difficult to test in biological organisms but may be revealed by machine perceptual systems optimized under different conditions. We investigated environmental and physiological influences on pitch perception, whose properties are commonly linked to peripheral neural coding limits. We first trained artificial neural networks to estimate fundamental frequency from biologically faithful cochlear representations of natural sounds. The best-performing networks replicated many characteristics of human pitch judgments. To probe the origins of these characteristics, we then optimized networks given altered cochleae or sound statistics. Human-like behavior emerged only when cochleae had high temporal fidelity and when models were optimized for naturalistic sounds. The results suggest pitch perception is critically shaped by the constraints of natural environments in addition to those of the cochlea, illustrating the use of artificial neural networks to reveal underpinnings of behavior.

Suggested Citation

  • Mark R. Saddler & Ray Gonzalez & Josh H. McDermott, 2021. "Deep neural network models reveal interplay of peripheral coding and stimulus statistics in pitch perception," Nature Communications, Nature, vol. 12(1), pages 1-25, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27366-6
    DOI: 10.1038/s41467-021-27366-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-27366-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-27366-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Oded Barzelay & Miriam Furst & Omri Barak, 2017. "A New Approach to Model Pitch Perception Using Sparse Coding," PLOS Computational Biology, Public Library of Science, vol. 13(1), pages 1-36, January.
    2. Johannes Mehrer & Courtney J. Spoerer & Nikolaus Kriegeskorte & Tim C. Kietzmann, 2020. "Individual differences among deep neural network models," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    3. Christophe Micheyl & Paul R Schrater & Andrew J Oxenham, 2013. "Auditory Frequency and Intensity Discrimination Explained Using a Cortical Population Rate Code," PLOS Computational Biology, Public Library of Science, vol. 9(11), pages 1-7, November.
    4. Daniel Bendor & Xiaoqin Wang, 2005. "The neuronal representation of pitch in primate auditory cortex," Nature, Nature, vol. 436(7054), pages 1161-1165, August.
    5. Malinda J. McPherson & Josh H. McDermott, 2018. "Diversity in pitch perception revealed by task dependence," Nature Human Behaviour, Nature, vol. 2(1), pages 52-66, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mark R. Saddler & Josh H. McDermott, 2024. "Models optimized for real-world tasks reveal the task-dependent necessity of precise temporal coding in hearing," Nature Communications, Nature, vol. 15(1), pages 1-29, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Falk Lieder & Klaas E Stephan & Jean Daunizeau & Marta I Garrido & Karl J Friston, 2013. "A Neurocomputational Model of the Mismatch Negativity," PLOS Computational Biology, Public Library of Science, vol. 9(11), pages 1-14, November.
    2. Katherine R. Storrs & Barton L. Anderson & Roland W. Fleming, 2021. "Unsupervised learning predicts human perception and misperception of gloss," Nature Human Behaviour, Nature, vol. 5(10), pages 1402-1417, October.
    3. Philip J Monahan & Kevin de Souza & William J Idsardi, 2008. "Neuromagnetic Evidence for Early Auditory Restoration of Fundamental Pitch," PLOS ONE, Public Library of Science, vol. 3(8), pages 1-6, August.
    4. Gwangsu Kim & Dong-Kyum Kim & Hawoong Jeong, 2024. "Spontaneous emergence of rudimentary music detectors in deep neural networks," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. R Channing Moore & Tyler Lee & Frédéric E Theunissen, 2013. "Noise-invariant Neurons in the Avian Auditory Cortex: Hearing the Song in Noise," PLOS Computational Biology, Public Library of Science, vol. 9(3), pages 1-14, March.
    6. Daniel Bendor, 2015. "The Role of Inhibition in a Computational Model of an Auditory Cortical Neuron during the Encoding of Temporal Information," PLOS Computational Biology, Public Library of Science, vol. 11(4), pages 1-25, April.
    7. Mark R. Saddler & Josh H. McDermott, 2024. "Models optimized for real-world tasks reveal the task-dependent necessity of precise temporal coding in hearing," Nature Communications, Nature, vol. 15(1), pages 1-29, December.
    8. Christophe Micheyl & Paul R Schrater & Andrew J Oxenham, 2013. "Auditory Frequency and Intensity Discrimination Explained Using a Cortical Population Rate Code," PLOS Computational Biology, Public Library of Science, vol. 9(11), pages 1-7, November.
    9. Daniel Pacheco-Estefan & Marie-Christin Fellner & Lukas Kunz & Hui Zhang & Peter Reinacher & Charlotte Roy & Armin Brandt & Andreas Schulze-Bonhage & Linglin Yang & Shuang Wang & Jing Liu & Gui Xue & , 2024. "Maintenance and transformation of representational formats during working memory prioritization," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    10. Patrick C M Wong & Bharath Chandrasekaran & Jing Zheng, 2012. "The Derived Allele of ASPM Is Associated with Lexical Tone Perception," PLOS ONE, Public Library of Science, vol. 7(4), pages 1-8, April.
    11. Nori Jacoby & Rainer Polak & Jessica A. Grahn & Daniel J. Cameron & Kyung Myun Lee & Ricardo Godoy & Eduardo A. Undurraga & Tomás Huanca & Timon Thalwitzer & Noumouké Doumbia & Daniel Goldberg & Eliza, 2024. "Commonality and variation in mental representations of music revealed by a cross-cultural comparison of rhythm priors in 15 countries," Nature Human Behaviour, Nature, vol. 8(5), pages 846-877, May.
    12. Oded Barzelay & Miriam Furst & Omri Barak, 2017. "A New Approach to Model Pitch Perception Using Sparse Coding," PLOS Computational Biology, Public Library of Science, vol. 13(1), pages 1-36, January.
    13. Allen P. F. Chen & Jeffrey M. Malgady & Lu Chen & Kaiyo W. Shi & Eileen Cheng & Joshua L. Plotkin & Shaoyu Ge & Qiaojie Xiong, 2022. "Nigrostriatal dopamine pathway regulates auditory discrimination behavior," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    14. Weiping Yang & Jingjing Yang & Yulin Gao & Xiaoyu Tang & Yanna Ren & Satoshi Takahashi & Jinglong Wu, 2015. "Effects of Sound Frequency on Audiovisual Integration: An Event-Related Potential Study," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-15, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27366-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.