IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0138296.html
   My bibliography  Save this article

Effects of Sound Frequency on Audiovisual Integration: An Event-Related Potential Study

Author

Listed:
  • Weiping Yang
  • Jingjing Yang
  • Yulin Gao
  • Xiaoyu Tang
  • Yanna Ren
  • Satoshi Takahashi
  • Jinglong Wu

Abstract

A combination of signals across modalities can facilitate sensory perception. The audiovisual facilitative effect strongly depends on the features of the stimulus. Here, we investigated how sound frequency, which is one of basic features of an auditory signal, modulates audiovisual integration. In this study, the task of the participant was to respond to a visual target stimulus by pressing a key while ignoring auditory stimuli, comprising of tones of different frequencies (0.5, 1, 2.5 and 5 kHz). A significant facilitation of reaction times was obtained following audiovisual stimulation, irrespective of whether the task-irrelevant sounds were low or high frequency. Using event-related potential (ERP), audiovisual integration was found over the occipital area for 0.5 kHz auditory stimuli from 190–210 ms, for 1 kHz stimuli from 170–200 ms, for 2.5 kHz stimuli from 140–200 ms, 5 kHz stimuli from 100–200 ms. These findings suggest that a higher frequency sound signal paired with visual stimuli might be early processed or integrated despite the auditory stimuli being task-irrelevant information. Furthermore, audiovisual integration in late latency (300–340 ms) ERPs with fronto-central topography was found for auditory stimuli of lower frequencies (0.5, 1 and 2.5 kHz). Our results confirmed that audiovisual integration is affected by the frequency of an auditory stimulus. Taken together, the neurophysiological results provide unique insight into how the brain processes a multisensory visual signal and auditory stimuli of different frequencies.

Suggested Citation

  • Weiping Yang & Jingjing Yang & Yulin Gao & Xiaoyu Tang & Yanna Ren & Satoshi Takahashi & Jinglong Wu, 2015. "Effects of Sound Frequency on Audiovisual Integration: An Event-Related Potential Study," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-15, September.
  • Handle: RePEc:plo:pone00:0138296
    DOI: 10.1371/journal.pone.0138296
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0138296
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0138296&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0138296?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Daniel Bendor & Xiaoqin Wang, 2005. "The neuronal representation of pitch in primate auditory cortex," Nature, Nature, vol. 436(7054), pages 1161-1165, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mark R. Saddler & Ray Gonzalez & Josh H. McDermott, 2021. "Deep neural network models reveal interplay of peripheral coding and stimulus statistics in pitch perception," Nature Communications, Nature, vol. 12(1), pages 1-25, December.
    2. Falk Lieder & Klaas E Stephan & Jean Daunizeau & Marta I Garrido & Karl J Friston, 2013. "A Neurocomputational Model of the Mismatch Negativity," PLOS Computational Biology, Public Library of Science, vol. 9(11), pages 1-14, November.
    3. Philip J Monahan & Kevin de Souza & William J Idsardi, 2008. "Neuromagnetic Evidence for Early Auditory Restoration of Fundamental Pitch," PLOS ONE, Public Library of Science, vol. 3(8), pages 1-6, August.
    4. Gwangsu Kim & Dong-Kyum Kim & Hawoong Jeong, 2024. "Spontaneous emergence of rudimentary music detectors in deep neural networks," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. R Channing Moore & Tyler Lee & Frédéric E Theunissen, 2013. "Noise-invariant Neurons in the Avian Auditory Cortex: Hearing the Song in Noise," PLOS Computational Biology, Public Library of Science, vol. 9(3), pages 1-14, March.
    6. Daniel Bendor, 2015. "The Role of Inhibition in a Computational Model of an Auditory Cortical Neuron during the Encoding of Temporal Information," PLOS Computational Biology, Public Library of Science, vol. 11(4), pages 1-25, April.
    7. Christophe Micheyl & Paul R Schrater & Andrew J Oxenham, 2013. "Auditory Frequency and Intensity Discrimination Explained Using a Cortical Population Rate Code," PLOS Computational Biology, Public Library of Science, vol. 9(11), pages 1-7, November.
    8. Patrick C M Wong & Bharath Chandrasekaran & Jing Zheng, 2012. "The Derived Allele of ASPM Is Associated with Lexical Tone Perception," PLOS ONE, Public Library of Science, vol. 7(4), pages 1-8, April.
    9. Oded Barzelay & Miriam Furst & Omri Barak, 2017. "A New Approach to Model Pitch Perception Using Sparse Coding," PLOS Computational Biology, Public Library of Science, vol. 13(1), pages 1-36, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0138296. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.