IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1003336.html
   My bibliography  Save this article

Auditory Frequency and Intensity Discrimination Explained Using a Cortical Population Rate Code

Author

Listed:
  • Christophe Micheyl
  • Paul R Schrater
  • Andrew J Oxenham

Abstract

The nature of the neural codes for pitch and loudness, two basic auditory attributes, has been a key question in neuroscience for over century. A currently widespread view is that sound intensity (subjectively, loudness) is encoded in spike rates, whereas sound frequency (subjectively, pitch) is encoded in precise spike timing. Here, using information-theoretic analyses, we show that the spike rates of a population of virtual neural units with frequency-tuning and spike-count correlation characteristics similar to those measured in the primary auditory cortex of primates, contain sufficient statistical information to account for the smallest frequency-discrimination thresholds measured in human listeners. The same population, and the same spike-rate code, can also account for the intensity-discrimination thresholds of humans. These results demonstrate the viability of a unified rate-based cortical population code for both sound frequency (pitch) and sound intensity (loudness), and thus suggest a resolution to a long-standing puzzle in auditory neuroscience.Author Summary: A widely held view among auditory scientists is that the neural code for sound intensity (or loudness) involves temporally coarse spike-rate information, whereas the code for sound frequency (or pitch) requires more fine-grained and precise spike timing information. One problem with this view is that neurons in auditory cortex do not produce precisely time-locked responses to higher frequencies within the pitch range, suggesting that a transformation to a rate code must occur. However, because cortical neurons exhibit relatively broad tuning to frequency and correlated spike counts, it is unclear whether a cortical population code based on spike rates alone can support the remarkably precise pitch-discrimination ability of humans. Here we show that a relatively small population of virtual neurons with frequency-tuning and spike-count correlation characteristics consistent with those of actual neurons in the primary auditory cortex of primates, can account for both the smallest frequency- and intensity-discrimination thresholds measured behaviorally in humans. These results suggest a resolution to a long-standing puzzle in auditory neuroscience.

Suggested Citation

  • Christophe Micheyl & Paul R Schrater & Andrew J Oxenham, 2013. "Auditory Frequency and Intensity Discrimination Explained Using a Cortical Population Rate Code," PLOS Computational Biology, Public Library of Science, vol. 9(11), pages 1-7, November.
  • Handle: RePEc:plo:pcbi00:1003336
    DOI: 10.1371/journal.pcbi.1003336
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003336
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1003336&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1003336?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Daniel Bendor & Xiaoqin Wang, 2005. "The neuronal representation of pitch in primate auditory cortex," Nature, Nature, vol. 436(7054), pages 1161-1165, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mark R. Saddler & Ray Gonzalez & Josh H. McDermott, 2021. "Deep neural network models reveal interplay of peripheral coding and stimulus statistics in pitch perception," Nature Communications, Nature, vol. 12(1), pages 1-25, December.
    2. Allen P. F. Chen & Jeffrey M. Malgady & Lu Chen & Kaiyo W. Shi & Eileen Cheng & Joshua L. Plotkin & Shaoyu Ge & Qiaojie Xiong, 2022. "Nigrostriatal dopamine pathway regulates auditory discrimination behavior," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mark R. Saddler & Ray Gonzalez & Josh H. McDermott, 2021. "Deep neural network models reveal interplay of peripheral coding and stimulus statistics in pitch perception," Nature Communications, Nature, vol. 12(1), pages 1-25, December.
    2. Falk Lieder & Klaas E Stephan & Jean Daunizeau & Marta I Garrido & Karl J Friston, 2013. "A Neurocomputational Model of the Mismatch Negativity," PLOS Computational Biology, Public Library of Science, vol. 9(11), pages 1-14, November.
    3. Philip J Monahan & Kevin de Souza & William J Idsardi, 2008. "Neuromagnetic Evidence for Early Auditory Restoration of Fundamental Pitch," PLOS ONE, Public Library of Science, vol. 3(8), pages 1-6, August.
    4. Gwangsu Kim & Dong-Kyum Kim & Hawoong Jeong, 2024. "Spontaneous emergence of rudimentary music detectors in deep neural networks," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. R Channing Moore & Tyler Lee & Frédéric E Theunissen, 2013. "Noise-invariant Neurons in the Avian Auditory Cortex: Hearing the Song in Noise," PLOS Computational Biology, Public Library of Science, vol. 9(3), pages 1-14, March.
    6. Daniel Bendor, 2015. "The Role of Inhibition in a Computational Model of an Auditory Cortical Neuron during the Encoding of Temporal Information," PLOS Computational Biology, Public Library of Science, vol. 11(4), pages 1-25, April.
    7. Patrick C M Wong & Bharath Chandrasekaran & Jing Zheng, 2012. "The Derived Allele of ASPM Is Associated with Lexical Tone Perception," PLOS ONE, Public Library of Science, vol. 7(4), pages 1-8, April.
    8. Oded Barzelay & Miriam Furst & Omri Barak, 2017. "A New Approach to Model Pitch Perception Using Sparse Coding," PLOS Computational Biology, Public Library of Science, vol. 13(1), pages 1-36, January.
    9. Weiping Yang & Jingjing Yang & Yulin Gao & Xiaoyu Tang & Yanna Ren & Satoshi Takahashi & Jinglong Wu, 2015. "Effects of Sound Frequency on Audiovisual Integration: An Event-Related Potential Study," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-15, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1003336. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.