IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-27352-y.html
   My bibliography  Save this article

Water sources aggregate parasites with increasing effects in more arid conditions

Author

Listed:
  • Georgia Titcomb

    (University of California
    Mpala Research Centre)

  • John Naisikie Mantas

    (Mpala Research Centre)

  • Jenna Hulke

    (Texas A&M University)

  • Ivan Rodriguez

    (University of California)

  • Douglas Branch

    (University of the West of England)

  • Hillary Young

    (University of California
    Mpala Research Centre)

Abstract

Shifts in landscape heterogeneity and climate can influence animal movement in ways that profoundly alter disease transmission. Water sources that are foci of animal activity have great potential to promote disease transmission, but it is unknown how this varies across a range of hosts and climatic contexts. For fecal-oral parasites, water resources can aggregate many different hosts in small areas, concentrate infectious material, and function as disease hotspots. This may be exacerbated where water is scarce and for species requiring frequent water access. Working in an East African savanna, we show via experimental and observational methods that water sources increase the density of wild and domestic herbivore feces and thus, the concentration of fecal-oral parasites in the environment, by up to two orders of magnitude. We show that this effect is amplified in drier areas and drier periods, creating dynamic and heterogeneous disease landscapes across space and time. We also show that herbivore grazing behaviors that expose them to fecal-oral parasites often increase at water sources relative to background sites, increasing potential parasite transmission at these hotspots. Critically, this effect varies by herbivore species, with strongest effects for two animals of concern for conservation and development: elephants and cattle.

Suggested Citation

  • Georgia Titcomb & John Naisikie Mantas & Jenna Hulke & Ivan Rodriguez & Douglas Branch & Hillary Young, 2021. "Water sources aggregate parasites with increasing effects in more arid conditions," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27352-y
    DOI: 10.1038/s41467-021-27352-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-27352-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-27352-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nunn, Charles L. & Thrall, Peter H. & Kappeler, Peter M., 2014. "Shared resources and disease dynamics in spatially structured populations," Ecological Modelling, Elsevier, vol. 272(C), pages 198-207.
    2. A. R. E. Sinclair & Simon Mduma & Justin S. Brashares, 2003. "Patterns of predation in a diverse predator–prey system," Nature, Nature, vol. 425(6955), pages 288-290, September.
    3. Jianping Huang & Haipeng Yu & Xiaodan Guan & Guoyin Wang & Ruixia Guo, 2016. "Accelerated dryland expansion under climate change," Nature Climate Change, Nature, vol. 6(2), pages 166-171, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pritchard, Alexander J. & Fefferman, Nina H., 2023. "Trade-offs in resource access and health by avoidance of self-fouling, motivated via disgust," Ecological Modelling, Elsevier, vol. 476(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Shuai & Wang, Liang-Jie & Chu, Lei & Jiang, Jiang, 2023. "Determination of ecological restoration patterns based on water security and food security in arid regions," Agricultural Water Management, Elsevier, vol. 278(C).
    2. Sourav Mukherjee & Ashok Kumar Mishra & Jakob Zscheischler & Dara Entekhabi, 2023. "Interaction between dry and hot extremes at a global scale using a cascade modeling framework," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    3. Jinquan Li & Junmin Pei & Changming Fang & Bo Li & Ming Nie, 2024. "Drought may exacerbate dryland soil inorganic carbon loss under warming climate conditions," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Jinfei Hu & Guangju Zhao & Pengfei Li & Xingmin Mu, 2022. "Variations of pan evaporation and its attribution from 1961 to 2015 on the Loess Plateau, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(2), pages 1199-1217, March.
    5. Zhaoxia Ye & Aihong Fu & Shuhua Zhang & Yuhai Yang, 2020. "Suitable Scale of an Oasis in Different Scenarios in an Arid Region of China: A Case Study of the Ejina Oasis," Sustainability, MDPI, vol. 12(7), pages 1-14, March.
    6. Malpede, Maurizio & Percoco, Marco, 2024. "The long-term economic effects of aridification," Ecological Economics, Elsevier, vol. 217(C).
    7. Qifei Zhang & Yaning Chen & Zhi Li & Congjian Sun & Yanyun Xiang & Zhihui Liu, 2023. "Spatio-Temporal Development of Vegetation Carbon Sinks and Sources in the Arid Region of Northwest China," IJERPH, MDPI, vol. 20(4), pages 1-23, February.
    8. Zhang, Xucheng & Wang, Hongli & Hou, Huizhi & Yu, Xianfeng & Ma, Yifan & Fang, Yanjie & Lei, Kangning, 2020. "Did plastic mulching constantly increase crop yield but decrease soil water in a semiarid rain-fed area?," Agricultural Water Management, Elsevier, vol. 241(C).
    9. Ruiwen Zhang & Chengyi Zhao & Xiaofei Ma & Karthikeyan Brindha & Qifei Han & Chaofan Li & Xiaoning Zhao, 2019. "Projected Spatiotemporal Dynamics of Drought under Global Warming in Central Asia," Sustainability, MDPI, vol. 11(16), pages 1-19, August.
    10. Francisca Ruiz-Gozalvo & Susana Martín-Fernández & Roberto Garfias-Salinas, 2019. "Characterization of Small Forest Landowners as a Basis for Sustainable Forestry Management in the Libertador General Bernardo O’Higgins Region, Chile," Sustainability, MDPI, vol. 11(24), pages 1-15, December.
    11. Jinling Piao & Wen Chen & Shangfeng Chen & Hainan Gong & Lin Wang, 2021. "Mean states and future projections of precipitation over the monsoon transitional zone in China in CMIP5 and CMIP6 models," Climatic Change, Springer, vol. 169(3), pages 1-24, December.
    12. Yong Zhang & Lubin Han & Xuemei Shao & Qing Yang & Zhi-Yong Yin, 2021. "Moisture variations during the first millennium CE and their linkage with social developments along the Silk Road in northwestern China," Climatic Change, Springer, vol. 168(3), pages 1-19, October.
    13. Umara Qadeer & Mukhtar Ahmed & Fayyaz-ul -Hassan & Muhammad Akmal, 2019. "Impact of Nitrogen Addition on Physiological, Crop Total Nitrogen, Efficiencies and Agronomic Traits of the Wheat Crop under Rainfed Conditions," Sustainability, MDPI, vol. 11(22), pages 1-21, November.
    14. José A. Sillero-Medina & Paloma Hueso-González & José D. Ruiz-Sinoga, 2020. "Differences in the Soil Quality Index for Two Contrasting Mediterranean Landscapes in Southern Spain," Land, MDPI, vol. 9(11), pages 1-15, October.
    15. Jinglin Zhang & Wei Zhang & Shiwei Liu & Weiming Kong & Wei Zhang, 2022. "Cryosphere Services to Advance the National SDG Priorities in Himalaya-Karakoram Region," Sustainability, MDPI, vol. 14(5), pages 1-16, February.
    16. Zhou, Qing & Zhang, Yali & Wu, Feng, 2021. "Evaluation of the most proper management scale on water use efficiency and water productivity: A case study of the Heihe River Basin, China," Agricultural Water Management, Elsevier, vol. 246(C).
    17. Wang, Tong & Jin, Hailong & Kreuter, Urs & Teague, Richard, 2021. "Expanding grass-based agriculture on marginal land in the U.S. Great Plains: The role of management intensive grazing," Land Use Policy, Elsevier, vol. 104(C).
    18. Wang, Hongli & Zhang, Xucheng & Zhang, Guoping & Yu, Xianfeng & Hou, Huizhi & Fang, Yanjie & Ma, Yifan & Lei, Kangning, 2022. "Mulching coordinated the seasonal soil hydrothermal relationships and promoted maize productivity in a semi-arid rainfed area on the Loess Plateau," Agricultural Water Management, Elsevier, vol. 263(C).
    19. Laiquan Jin & Jiquan Zhang & Ruoyu Wang & Minghua Zhang & Yuhai Bao & Enliang Guo & Yongfang Wang, 2019. "Analysis for Spatio-Temporal Variation Characteristics of Droughts in Different Climatic Regions of the Mongolian Plateau Based on SPEI," Sustainability, MDPI, vol. 11(20), pages 1-21, October.
    20. Francisco J. Moral & Cristina Aguirado & Virginia Alberdi & Luis L. Paniagua & Abelardo García-Martín & Francisco J. Rebollo, 2023. "Future Scenarios for Aridity under Conditions of Global Climate Change in Extremadura, Southwestern Spain," Land, MDPI, vol. 12(3), pages 1-13, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27352-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.