IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v272y2014icp198-207.html
   My bibliography  Save this article

Shared resources and disease dynamics in spatially structured populations

Author

Listed:
  • Nunn, Charles L.
  • Thrall, Peter H.
  • Kappeler, Peter M.

Abstract

Infectious agents are likely to spread among animals that live together, yet we know remarkably little about how infectious agents move among social units. Sharing of resources – such as shared waterholes during a dry season – may provide an efficient route for the transmission of infectious agents among different social groups, and thus could represent an overlooked factor in understanding disease risks in spatially structured populations. We developed a spatially explicit individual-based model to investigate a situation in which multiple individuals of a single species converge at shared resources during periods of resource scarcity (i.e., “lean seasons”). We simulated the transmission of a fecally transmitted infectious agent in a spatially explicit meta-population of 81 social groups distributed on a square lattice. Time steps in the simulation corresponded to “days,” and we simulated disease dynamics over 10 yearly cycles of normal and lean seasons. The duration of the lean season varied across 1000 independent simulation runs, as did 12 other parameters sampled from a Latin hypercube distribution. Seasonal sharing of resources had marked effects on disease dynamics, with increasing prevalence of the infectious agent as lean season duration increased (and thus, duration of resource sharing also increased). Infection patterns exhibited three phases: an initial intermediate prevalence on the normal season home range, a rapid increase in prevalence around the shared resource during the lean season, and then a rapid decline in prevalence upon returning to the normal season range. These findings suggest that seasonal migration increases disease risk when animals congregate around resources, but enables them to escape soil-borne infectious agents upon returning to their original home ranges. Thus, seasonal sharing of resources has both negative and positive effects on disease risk.

Suggested Citation

  • Nunn, Charles L. & Thrall, Peter H. & Kappeler, Peter M., 2014. "Shared resources and disease dynamics in spatially structured populations," Ecological Modelling, Elsevier, vol. 272(C), pages 198-207.
  • Handle: RePEc:eee:ecomod:v:272:y:2014:i:c:p:198-207
    DOI: 10.1016/j.ecolmodel.2013.10.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380013004663
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2013.10.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bonnell, Tyler R. & Sengupta, Raja R. & Chapman, Colin A. & Goldberg, Tony L., 2010. "An agent-based model of red colobus resources and disease dynamics implicates key resource sites as hot spots of disease transmission," Ecological Modelling, Elsevier, vol. 221(20), pages 2491-2500.
    2. Marcel Salathé & James H Jones, 2010. "Dynamics and Control of Diseases in Networks with Community Structure," PLOS Computational Biology, Public Library of Science, vol. 6(4), pages 1-11, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Georgia Titcomb & John Naisikie Mantas & Jenna Hulke & Ivan Rodriguez & Douglas Branch & Hillary Young, 2021. "Water sources aggregate parasites with increasing effects in more arid conditions," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    2. Bonnell, Tyler R. & Ghai, Ria R. & Goldberg, Tony L. & Sengupta, Raja & Chapman, Colin A., 2016. "Spatial patterns of persistence for environmentally transmitted parasites: Effects of regional climate and local landscape," Ecological Modelling, Elsevier, vol. 338(C), pages 78-89.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gregory, Steve, 2012. "Ordered community structure in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2752-2763.
    2. Wei Zhong, 2017. "Simulating influenza pandemic dynamics with public risk communication and individual responsive behavior," Computational and Mathematical Organization Theory, Springer, vol. 23(4), pages 475-495, December.
    3. Chen, Dandan & Zheng, Muhua & Zhao, Ming & Zhang, Yu, 2018. "A dynamic vaccination strategy to suppress the recurrent epidemic outbreaks," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 108-114.
    4. Xie, Xiaoxiao & Huo, Liang'an, 2024. "Co-evolution dynamics between information and epidemic with asymmetric activity levels and community structure in time-varying multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    5. Bowen Yan & Steve Gregory, 2013. "Identifying Communities and Key Vertices by Reconstructing Networks from Samples," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-14, April.
    6. Zhou, Bin & Yan, Xiao-Yong & Xu, Xiao-Ke & Xu, Xiao-Ting & Wang, Nianxin, 2018. "Evolutionary of online social networks driven by pareto wealth distribution and bidirectional preferential attachment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 427-434.
    7. Eugenio Valdano & Chiara Poletto & Armando Giovannini & Diana Palma & Lara Savini & Vittoria Colizza, 2015. "Predicting Epidemic Risk from Past Temporal Contact Data," PLOS Computational Biology, Public Library of Science, vol. 11(3), pages 1-19, March.
    8. Saxena, Chandni & Doja, M.N. & Ahmad, Tanvir, 2018. "Group based centrality for immunization of complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 35-47.
    9. Stephen J Gilmore, 2011. "Control Strategies for Endemic Childhood Scabies," PLOS ONE, Public Library of Science, vol. 6(1), pages 1-14, January.
    10. Kotnis, Bhushan & Kuri, Joy, 2016. "Cost effective campaigning in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 670-681.
    11. Kathrin Büttner & Joachim Krieter & Arne Traulsen & Imke Traulsen, 2013. "Efficient Interruption of Infection Chains by Targeted Removal of Central Holdings in an Animal Trade Network," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-12, September.
    12. Jose L Herrera & Ravi Srinivasan & John S Brownstein & Alison P Galvani & Lauren Ancel Meyers, 2016. "Disease Surveillance on Complex Social Networks," PLOS Computational Biology, Public Library of Science, vol. 12(7), pages 1-16, July.
    13. Shams, Bita & Khansari, Mohammad, 2015. "On the impact of epidemic severity on network immunization algorithms," Theoretical Population Biology, Elsevier, vol. 106(C), pages 83-93.
    14. Karikalan Nagarajan & Bharathidasan Palani & Javeed Basha & Lavanya Jayabal & Malaisamy Muniyandi, 2022. "A social networks-driven approach to understand the unique alcohol mixing patterns of tuberculosis patients: reporting methods and findings from a high TB-burden setting," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-8, December.
    15. Gong Kai & Kang Li, 2018. "A New K-Shell Decomposition Method for Identifying Influential Spreaders of Epidemics on Community Networks," Journal of Systems Science and Information, De Gruyter, vol. 6(4), pages 366-375, August.
    16. Tzai-Hung Wen & Wei Chien Benny Chin, 2015. "Incorporation of Spatial Interactions in Location Networks to Identify Critical Geo-Referenced Routes for Assessing Disease Control Measures on a Large-Scale Campus," IJERPH, MDPI, vol. 12(4), pages 1-15, April.
    17. Luis E C Rocha & Vincent D Blondel, 2013. "Bursts of Vertex Activation and Epidemics in Evolving Networks," PLOS Computational Biology, Public Library of Science, vol. 9(3), pages 1-9, March.
    18. Hu, Xin & Wang, Zhishuang & Sun, Qingyi & Chen, Jiaxing & Zhao, Dawei & Xia, Chengyi, 2024. "Coupled propagation between one communicable disease and related two types of information on multiplex networks with simplicial complexes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 645(C).
    19. Benjamin Blonder & Anna Dornhaus, 2011. "Time-Ordered Networks Reveal Limitations to Information Flow in Ant Colonies," PLOS ONE, Public Library of Science, vol. 6(5), pages 1-8, May.
    20. Shepelev, I.A. & Bukh, A.V. & Strelkova, G.I., 2022. "Anti-phase synchronization of waves in a multiplex network of van der Pol oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:272:y:2014:i:c:p:198-207. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.