Molecular-level insights into the electronic effects in platinum-catalyzed carbon monoxide oxidation
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-021-27238-z
Download full text from publisher
References listed on IDEAS
- Wenshuai Zhu & Zili Wu & Guo Shiou Foo & Xiang Gao & Mingxia Zhou & Bin Liu & Gabriel M. Veith & Peiwen Wu & Katie L. Browning & Ho Nyung Lee & Huaming Li & Sheng Dai & Huiyuan Zhu, 2017. "Taming interfacial electronic properties of platinum nanoparticles on vacancy-abundant boron nitride nanosheets for enhanced catalysis," Nature Communications, Nature, vol. 8(1), pages 1-7, August.
- Colleen Jackson & Graham T. Smith & David W. Inwood & Andrew S. Leach & Penny S. Whalley & Mauro Callisti & Tomas Polcar & Andrea E. Russell & Pieter Levecque & Denis Kramer, 2017. "Electronic metal-support interaction enhanced oxygen reduction activity and stability of boron carbide supported platinum," Nature Communications, Nature, vol. 8(1), pages 1-11, August.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Tengfei Zhang & Peng Zheng & Jiajian Gao & Xiaolong Liu & Yongjun Ji & Junbo Tian & Yang Zou & Zhiyi Sun & Qiao Hu & Guokang Chen & Wenxing Chen & Xi Liu & Ziyi Zhong & Guangwen Xu & Tingyu Zhu & Fabi, 2024. "Simultaneously activating molecular oxygen and surface lattice oxygen on Pt/TiO2 for low-temperature CO oxidation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jiayi Chen & Mohammed Aliasgar & Fernando Buendia Zamudio & Tianyu Zhang & Yilin Zhao & Xu Lian & Lan Wen & Haozhou Yang & Wenping Sun & Sergey M. Kozlov & Wei Chen & Lei Wang, 2023. "Diversity of platinum-sites at platinum/fullerene interface accelerates alkaline hydrogen evolution," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
- Wu, Zexing & Chen, Zhi & Xu, Kunhan & Li, Bin & Li, Zhenjiang & Xu, Guangrui & Xiao, Weiping & Ma, Tianyi & Fu, Yunlei & Wang, Lei, 2023. "Cationic defects coupled with trace Pt under the assistance of corrosive engineering for efficient hydrogen electrocatalysis with large current density," Renewable Energy, Elsevier, vol. 210(C), pages 196-202.
- Chenlu Wang & Liping Zhou & Chengzhe Liu & Jiaming Qiao & Xinrui Han & Luyang Wang & Yaxi Liu & Bi Xu & Qinfang Qiu & Zizhuo Zhang & Jiale Wang & Xiaoya Zhou & Mengqi Zeng & Lilei Yu & Lei Fu, 2024. "Pt nanoshells with a high NIR-II photothermal conversion efficiency mediates multimodal neuromodulation against ventricular arrhythmias," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27238-z. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.