IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-27127-5.html
   My bibliography  Save this article

Intrareticular charge transfer regulated electrochemiluminescence of donor–acceptor covalent organic frameworks

Author

Listed:
  • Rengan Luo

    (State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University)

  • Haifeng Lv

    (Hefei National Laboratory for Physical Sciences at the Microscale, Synergetic Innovation of Quantum Information and Quantum Technology, CAS Center for Excellence in Nanoscience, and School of Chemistry and Materials Sciences, University of Science and Technology of China)

  • Qiaobo Liao

    (School of Chemistry and Chemical Engineering, Nanjing University)

  • Ningning Wang

    (State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University)

  • Jiarui Yang

    (State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University)

  • Yang Li

    (State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University)

  • Kai Xi

    (School of Chemistry and Chemical Engineering, Nanjing University)

  • Xiaojun Wu

    (Hefei National Laboratory for Physical Sciences at the Microscale, Synergetic Innovation of Quantum Information and Quantum Technology, CAS Center for Excellence in Nanoscience, and School of Chemistry and Materials Sciences, University of Science and Technology of China)

  • Huangxian Ju

    (State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University)

  • Jianping Lei

    (State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University)

Abstract

The control of charge transfer between radical anions and cations is a promising way for decoding the emission mechanism in electrochemiluminescence (ECL) systems. Herein, a type of donor-acceptor (D-A) covalent organic framework (COF) with triphenylamine and triazine units is designed as a highly efficient ECL emitter with tunable intrareticular charge transfer (IRCT). The D-A COF demonstrates 123 folds enhancement in ECL intensity compared with its benzene-based COF with small D-A contrast. Further, the COF’s crystallinity- and protonation-modulated ECL behaviors confirm ECL dependence on intrareticular charge transfer between donor and acceptor units, which is rationalized by density functional theory. Significantly, dual-peaked ECL patterns of COFs are achieved through an IRCT mediated competitive oxidation mechanism: the coreactant-mediated oxidation at lower potential and the direct oxidation at higher potential. This work provides a new fundamental and approach to improve the ECL efficiency for designing next-generation ECL devices.

Suggested Citation

  • Rengan Luo & Haifeng Lv & Qiaobo Liao & Ningning Wang & Jiarui Yang & Yang Li & Kai Xi & Xiaojun Wu & Huangxian Ju & Jianping Lei, 2021. "Intrareticular charge transfer regulated electrochemiluminescence of donor–acceptor covalent organic frameworks," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27127-5
    DOI: 10.1038/s41467-021-27127-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-27127-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-27127-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Laura Ascherl & Emrys W. Evans & Matthias Hennemann & Daniele Di Nuzzo & Alexander G. Hufnagel & Michael Beetz & Richard H. Friend & Timothy Clark & Thomas Bein & Florian Auras, 2018. "Solvatochromic covalent organic frameworks," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    2. Alessandra Zanut & Andrea Fiorani & Sofia Canola & Toshiro Saito & Nicole Ziebart & Stefania Rapino & Sara Rebeccani & Antonio Barbon & Takashi Irie & Hans-Peter Josel & Fabrizia Negri & Massimo Marca, 2020. "Insights into the mechanism of coreactant electrochemiluminescence facilitating enhanced bioanalytical performance," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    3. Tae Wu Kim & Sunhong Jun & Yoonhoo Ha & Rajesh K. Yadav & Abhishek Kumar & Chung-Yul Yoo & Inhwan Oh & Hyung-Kyu Lim & Jae Won Shin & Ryong Ryoo & Hyungjun Kim & Jeongho Kim & Jin-Ook Baeg & Hyotcherl, 2019. "Ultrafast charge transfer coupled with lattice phonons in two-dimensional covalent organic frameworks," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    4. Vijay S. Vyas & Frederik Haase & Linus Stegbauer & Gökcen Savasci & Filip Podjaski & Christian Ochsenfeld & Bettina V. Lotsch, 2015. "A tunable azine covalent organic framework platform for visible light-induced hydrogen generation," Nature Communications, Nature, vol. 6(1), pages 1-9, December.
    5. Hong-Jing Zhu & Meng Lu & Yi-Rong Wang & Su-Juan Yao & Mi Zhang & Yu-He Kan & Jiang Liu & Yifa Chen & Shun-Li Li & Ya-Qian Lan, 2020. "Efficient electron transmission in covalent organic framework nanosheets for highly active electrocatalytic carbon dioxide reduction," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qing Hao & Xiao-Rui Ren & Yichen Chen & Chao Zhao & Jingyi Xu & Dong Wang & Hong Liu, 2023. "A sweat-responsive covalent organic framework film for material-based liveness detection and sweat pore analysis," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Jia-Rui Wang & Kepeng Song & Tian-Xiang Luan & Ke Cheng & Qiurong Wang & Yue Wang & William W. Yu & Pei-Zhou Li & Yanli Zhao, 2024. "Robust links in photoactive covalent organic frameworks enable effective photocatalytic reactions under harsh conditions," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yimeng Li & Li Yang & Huijie He & Lei Sun & Honglei Wang & Xu Fang & Yanliang Zhao & Daoyuan Zheng & Yu Qi & Zhen Li & Weiqiao Deng, 2022. "In situ photodeposition of platinum clusters on a covalent organic framework for photocatalytic hydrogen production," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Wei Zhao & Liang Luo & Muyu Cong & Xueyan Liu & Zhiyun Zhang & Mounib Bahri & Boyu Li & Jing Yang & Miaojie Yu & Lunjie Liu & Yu Xia & Nigel D. Browning & Wei-Hong Zhu & Weiwei Zhang & Andrew I. Coope, 2024. "Nanoscale covalent organic frameworks for enhanced photocatalytic hydrogen production," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Yangyang Xu & Tu Sun & Tengwu Zeng & Xiangyu Zhang & Xuan Yao & Shan Liu & Zhaolin Shi & Wen Wen & Yingbo Zhao & Shan Jiang & Yanhang Ma & Yue-Biao Zhang, 2023. "Symmetry-breaking dynamics in a tautomeric 3D covalent organic framework," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Qing Hao & Xiao-Rui Ren & Yichen Chen & Chao Zhao & Jingyi Xu & Dong Wang & Hong Liu, 2023. "A sweat-responsive covalent organic framework film for material-based liveness detection and sweat pore analysis," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    5. Xiaoyi Xu & Xinyu Wu & Kai Xu & Hong Xu & Hongzheng Chen & Ning Huang, 2023. "Pore partition in two-dimensional covalent organic frameworks," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Chen, Yu & Gao, Xiang & Liu, Xinwei & Ji, Guipeng & Fu, Li & Yang, Yingze & Yu, Qiqi & Zhang, Wenjing & Xue, Xiaomeng, 2020. "Water collection from air by ionic liquids for efficient visible-light-driven hydrogen evolution by metal-free conjugated polymer photocatalysts," Renewable Energy, Elsevier, vol. 147(P1), pages 594-601.
    7. Ting He & Wenlong Zhen & Yongzhi Chen & Yuanyuan Guo & Zhuoer Li & Ning Huang & Zhongping Li & Ruoyang Liu & Yuan Liu & Xu Lian & Can Xue & Tze Chien Sum & Wei Chen & Donglin Jiang, 2023. "Integrated interfacial design of covalent organic framework photocatalysts to promote hydrogen evolution from water," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    8. Chih-Li Chang & Wei-Cheng Lin & Li-Yu Ting & Chin-Hsuan Shih & Shih-Yuan Chen & Tse-Fu Huang & Hiroyuki Tateno & Jayachandran Jayakumar & Wen-Yang Jao & Chen-Wei Tai & Che-Yi Chu & Chin-Wen Chen & Chi, 2022. "Main-chain engineering of polymer photocatalysts with hydrophilic non-conjugated segments for visible-light-driven hydrogen evolution," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    9. Fuyang Liu & Peng Zhou & Yanghui Hou & Hao Tan & Yin Liang & Jialiang Liang & Qing Zhang & Shaojun Guo & Meiping Tong & Jinren Ni, 2023. "Covalent organic frameworks for direct photosynthesis of hydrogen peroxide from water, air and sunlight," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    10. Ji Wei Sun & Xuefeng Wu & Peng Fei Liu & Jiacheng Chen & Yuanwei Liu & Zhen Xin Lou & Jia Yue Zhao & Hai Yang Yuan & Aiping Chen & Xue Lu Wang & Minghui Zhu & Sheng Dai & Hua Gui Yang, 2023. "Scalable synthesis of coordinatively unsaturated metal-nitrogen sites for large-scale CO2 electrolysis," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    11. Qinying Pan & Mohamed Abdellah & Yuehan Cao & Weihua Lin & Yang Liu & Jie Meng & Quan Zhou & Qian Zhao & Xiaomei Yan & Zonglong Li & Hao Cui & Huili Cao & Wenting Fang & David Ackland Tanner & Mahmoud, 2022. "Ultrafast charge transfer dynamics in 2D covalent organic frameworks/Re-complex hybrid photocatalyst," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    12. Yajun Zou & Sara Abednatanzi & Parviz Gohari Derakhshandeh & Stefano Mazzanti & Christoph M. Schüßlbauer & Daniel Cruz & Pascal Voort & Jian-Wen Shi & Markus Antonietti & Dirk M. Guldi & Aleksandr Sav, 2022. "Red edge effect and chromoselective photocatalysis with amorphous covalent triazine-based frameworks," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    13. Yan Yang & Xiaoyu Chu & Hong-Yu Zhang & Rui Zhang & Yu-Han Liu & Feng-Ming Zhang & Meng Lu & Zhao-Di Yang & Ya-Qian Lan, 2023. "Engineering β-ketoamine covalent organic frameworks for photocatalytic overall water splitting," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    14. Minghao Liu & Shuai Yang & Xiubei Yang & Cheng-Xing Cui & Guojuan Liu & Xuewen Li & Jun He & George Zheng Chen & Qing Xu & Gaofeng Zeng, 2023. "Post-synthetic modification of covalent organic frameworks for CO2 electroreduction," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    15. Huihui Zhang & Chang Xu & Xiaowen Zhan & Yu Yu & Kaifu Zhang & Qiquan Luo & Shan Gao & Jinlong Yang & Yi Xie, 2022. "Mechanistic insights into CO2 conversion chemistry of copper bis-(terpyridine) molecular electrocatalyst using accessible operando spectrochemistry," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    16. Yanfeng Fang & Hong Yang & Yuhua Hou & Wang Li & Yanfei Shen & Songqin Liu & Yuanjian Zhang, 2024. "Timescale correlation of shallow trap states increases electrochemiluminescence efficiency in carbon nitrides," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    17. Gobinda Das & Bikash Garai & Thirumurugan Prakasam & Farah Benyettou & Sabu Varghese & Sudhir Kumar Sharma & Felipe Gándara & Renu Pasricha & Maria Baias & Ramesh Jagannathan & Na’il Saleh & Mourad El, 2022. "Fluorescence turn on amine detection in a cationic covalent organic framework," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27127-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.