IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-26971-9.html
   My bibliography  Save this article

A model of tension-induced fiber growth predicts white matter organization during brain folding

Author

Listed:
  • Kara E. Garcia

    (Indiana University School of Medicine, Department of Radiology and Imaging Sciences
    Washington University in St. Louis, Department of Mechanical Engineering and Materials Science)

  • Xiaojie Wang

    (Oregon Health and Science University, Division of Neuroscience, Oregon National Primate Research Center
    Oregon Health and Science University)

  • Christopher D. Kroenke

    (Oregon Health and Science University, Division of Neuroscience, Oregon National Primate Research Center
    Oregon Health and Science University)

Abstract

The past decade has experienced renewed interest in the physical processes that fold the developing cerebral cortex. Biomechanical models and experiments suggest that growth of the cortex, outpacing growth of underlying subcortical tissue (prospective white matter), is sufficient to induce folding. However, current models do not explain the well-established links between white matter organization and fold morphology, nor do they consider subcortical remodeling that occurs during the period of folding. Here we propose a framework by which cortical folding may induce subcortical fiber growth and organization. Simulations incorporating stress-induced fiber elongation indicate that subcortical stresses resulting from folding are sufficient to induce stereotyped fiber organization beneath gyri and sulci. Model predictions are supported by high-resolution ex vivo diffusion tensor imaging of the developing rhesus macaque brain. Together, results provide support for the theory of cortical growth-induced folding and indicate that mechanical feedback plays a significant role in brain connectivity.

Suggested Citation

  • Kara E. Garcia & Xiaojie Wang & Christopher D. Kroenke, 2021. "A model of tension-induced fiber growth predicts white matter organization during brain folding," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26971-9
    DOI: 10.1038/s41467-021-26971-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-26971-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-26971-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David C. Van Essen, 1997. "A tension-based theory of morphogenesis and compact wiring in the central nervous system," Nature, Nature, vol. 385(6614), pages 313-318, January.
    2. Claus C Hilgetag & Helen Barbas, 2006. "Role of Mechanical Factors in the Morphology of the Primate Cerebral Cortex," PLOS Computational Biology, Public Library of Science, vol. 2(3), pages 1-14, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xinyuan Liang & Lianglong Sun & Xuhong Liao & Tianyuan Lei & Mingrui Xia & Dingna Duan & Zilong Zeng & Qiongling Li & Zhilei Xu & Weiwei Men & Yanpei Wang & Shuping Tan & Jia-Hong Gao & Shaozheng Qin , 2024. "Structural connectome architecture shapes the maturation of cortical morphology from childhood to adolescence," Nature Communications, Nature, vol. 15(1), pages 1-18, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ashish Raj & Yu-hsien Chen, 2011. "The Wiring Economy Principle: Connectivity Determines Anatomy in the Human Brain," PLOS ONE, Public Library of Science, vol. 6(9), pages 1-11, September.
    2. Claus C Hilgetag & Helen Barbas, 2006. "Role of Mechanical Factors in the Morphology of the Primate Cerebral Cortex," PLOS Computational Biology, Public Library of Science, vol. 2(3), pages 1-14, March.
    3. Bruton, Oliver J., 2021. "Is there a “g-neuron”? Establishing a systematic link between general intelligence (g) and the von Economo neuron," Intelligence, Elsevier, vol. 86(C).
    4. Michael B Kranz & Michelle W Voss & Gillian E Cooke & Sarah E Banducci & Agnieszka Z Burzynska & Arthur F Kramer, 2018. "The cortical structure of functional networks associated with age-related cognitive abilities in older adults," PLOS ONE, Public Library of Science, vol. 13(9), pages 1-26, September.
    5. Benjamin B. Sun & Stephanie J. Loomis & Fabrizio Pizzagalli & Natalia Shatokhina & Jodie N. Painter & Christopher N. Foley & Megan E. Jensen & Donald G. McLaren & Sai Spandana Chintapalli & Alyssa H. , 2022. "Genetic map of regional sulcal morphology in the human brain from UK biobank data," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    6. Marcus Kaiser & Claus C Hilgetag, 2006. "Nonoptimal Component Placement, but Short Processing Paths, due to Long-Distance Projections in Neural Systems," PLOS Computational Biology, Public Library of Science, vol. 2(7), pages 1-11, July.
    7. Cecilia L Friedrichs-Maeder & Alessandra Griffa & Juliane Schneider & Petra Susan Hüppi & Anita Truttmann & Patric Hagmann, 2017. "Exploring the role of white matter connectivity in cortex maturation," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-18, May.
    8. Julien Lefèvre & Jean-François Mangin, 2010. "A Reaction-Diffusion Model of Human Brain Development," PLOS Computational Biology, Public Library of Science, vol. 6(4), pages 1-10, April.
    9. Deborah A Striegel & Monica K Hurdal, 2009. "Chemically Based Mathematical Model for Development of Cerebral Cortical Folding Patterns," PLOS Computational Biology, Public Library of Science, vol. 5(9), pages 1-6, September.
    10. David Samu & Anil K Seth & Thomas Nowotny, 2014. "Influence of Wiring Cost on the Large-Scale Architecture of Human Cortical Connectivity," PLOS Computational Biology, Public Library of Science, vol. 10(4), pages 1-24, April.
    11. Amanda Worker & Camilla Blain & Jozef Jarosz & K Ray Chaudhuri & Gareth J Barker & Steven C R Williams & Richard Brown & P Nigel Leigh & Andrew Simmons, 2014. "Cortical Thickness, Surface Area and Volume Measures in Parkinson's Disease, Multiple System Atrophy and Progressive Supranuclear Palsy," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26971-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.