IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v175y2023ip2s096007792300958x.html
   My bibliography  Save this article

Entropy structure informed learning for solving inverse problems of differential equations

Author

Listed:
  • Jiang, Yan
  • Yang, Wuyue
  • Zhu, Yi
  • Hong, Liu

Abstract

Entropy, since its first discovery by Ludwig Boltzmann in 1877, has been widely applied in diverse disciplines, including thermodynamics, continuum mechanics, mathematical analysis, machine learning, etc. In this paper, we propose a new method for solving the inverse XDE (ODE, PDE, SDE) problems by utilizing the entropy balance equation instead of the original differential equations. This distinguishing feature constitutes a major difference between our current method and other previous classical methods (e.g. SINDy). Despite concerns about the potential information loss during the compression procedure from the original XDEs to single entropy balance equation, various examples from MM reactions, Schlögl model and chemical Lorenz equations in the form of ODEs to nonlinear porous medium equation and Fokker–Planck equation with a double-well potential in the PDE form all well confirm the accuracy, robustness and reliability of our method, as well as its comparable performance with respect to SINDy.

Suggested Citation

  • Jiang, Yan & Yang, Wuyue & Zhu, Yi & Hong, Liu, 2023. "Entropy structure informed learning for solving inverse problems of differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
  • Handle: RePEc:eee:chsofr:v:175:y:2023:i:p2:s096007792300958x
    DOI: 10.1016/j.chaos.2023.114057
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007792300958X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.114057?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao Chen & Yang Liu & Hao Sun, 2021. "Physics-informed learning of governing equations from scarce data," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Taotao & Zhang, Xiaoge & Droguett, Enrique Lopez & Mosleh, Ali, 2023. "A generic physics-informed neural network-based framework for reliability assessment of multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    2. Se Ho Park & Seokmin Ha & Jae Kyoung Kim, 2023. "A general model-based causal inference method overcomes the curse of synchrony and indirect effect," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Xiaoyu Xie & Arash Samaei & Jiachen Guo & Wing Kam Liu & Zhengtao Gan, 2022. "Data-driven discovery of dimensionless numbers and governing laws from scarce measurements," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Fernández de la Mata, Félix & Gijón, Alfonso & Molina-Solana, Miguel & Gómez-Romero, Juan, 2023. "Physics-informed neural networks for data-driven simulation: Advantages, limitations, and opportunities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 610(C).
    5. Liu, Cheng & Wang, Wei & Wang, Zhixia & Ding, Bei & Wu, Zhiqiang & Feng, Jingjing, 2024. "Data-driven modeling and fast adjustment for digital coded metasurfaces database: Application in adaptive electromagnetic energy harvesting," Applied Energy, Elsevier, vol. 365(C).
    6. Zhang, Xiaoxia & Guan, Junsheng & Liu, Yanjun & Wang, Guoyin, 2024. "MORL4PDEs: Data-driven discovery of PDEs based on multi-objective optimization and reinforcement learning," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    7. Fujin Wang & Zhi Zhai & Zhibin Zhao & Yi Di & Xuefeng Chen, 2024. "Physics-informed neural network for lithium-ion battery degradation stable modeling and prognosis," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    8. Zhang, Wenbo & Gu, Wei, 2024. "Machine learning for a class of partial differential equations with multi-delays based on numerical Gaussian processes," Applied Mathematics and Computation, Elsevier, vol. 467(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:175:y:2023:i:p2:s096007792300958x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.