IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v180y2024ics0960077924000870.html
   My bibliography  Save this article

MORL4PDEs: Data-driven discovery of PDEs based on multi-objective optimization and reinforcement learning

Author

Listed:
  • Zhang, Xiaoxia
  • Guan, Junsheng
  • Liu, Yanjun
  • Wang, Guoyin

Abstract

Extracting fundamental behavior patterns or governing equations from data can deepen our understanding and insights into physical systems, it will lead to the better control and application of these systems in science and engineering. Currently, most existing methods in extracting governing equations require a candidate function term library in advance, which results in the limitations of those learned equations. To overcome this problem in this paper we propose a new method for data-driven discovery of parsimonious partial differential equations (PDEs) by utilizing symbolic regression based on multi-objective optimization and reinforcement learning, we call the MORL4PDEs in short. Specifically, neural network agent aims to generate the pre-order traversal sequence of a binary tree, and through which we can obtain the expression for each PDE. Then the resulting individuals can be used as the initial population in the multi-objective genetic algorithm to ensure the accuracy and parsimony of the equations, whose plausibility is guaranteed according to the constraints generated from the rules of PDEs. Meanwhile, the neural network is optimized through reinforcement learning with the final expression of each PDE as a reward. Finally, several experiments are conduct to demonstrate the effectiveness of the proposed method, and the results show MORL4PDEs can identify governing equations in different dynamic systems, including those PDEs with complex forms and high-order derivatives.

Suggested Citation

  • Zhang, Xiaoxia & Guan, Junsheng & Liu, Yanjun & Wang, Guoyin, 2024. "MORL4PDEs: Data-driven discovery of PDEs based on multi-objective optimization and reinforcement learning," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
  • Handle: RePEc:eee:chsofr:v:180:y:2024:i:c:s0960077924000870
    DOI: 10.1016/j.chaos.2024.114536
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924000870
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.114536?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao Chen & Yang Liu & Hao Sun, 2021. "Physics-informed learning of governing equations from scarce data," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Cheng & Wang, Wei & Wang, Zhixia & Ding, Bei & Wu, Zhiqiang & Feng, Jingjing, 2024. "Data-driven modeling and fast adjustment for digital coded metasurfaces database: Application in adaptive electromagnetic energy harvesting," Applied Energy, Elsevier, vol. 365(C).
    2. Zhou, Taotao & Zhang, Xiaoge & Droguett, Enrique Lopez & Mosleh, Ali, 2023. "A generic physics-informed neural network-based framework for reliability assessment of multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    3. Fujin Wang & Zhi Zhai & Zhibin Zhao & Yi Di & Xuefeng Chen, 2024. "Physics-informed neural network for lithium-ion battery degradation stable modeling and prognosis," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Se Ho Park & Seokmin Ha & Jae Kyoung Kim, 2023. "A general model-based causal inference method overcomes the curse of synchrony and indirect effect," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Jiang, Yan & Yang, Wuyue & Zhu, Yi & Hong, Liu, 2023. "Entropy structure informed learning for solving inverse problems of differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
    6. Xiaoyu Xie & Arash Samaei & Jiachen Guo & Wing Kam Liu & Zhengtao Gan, 2022. "Data-driven discovery of dimensionless numbers and governing laws from scarce measurements," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Zhang, Wenbo & Gu, Wei, 2024. "Machine learning for a class of partial differential equations with multi-delays based on numerical Gaussian processes," Applied Mathematics and Computation, Elsevier, vol. 467(C).
    8. Fernández de la Mata, Félix & Gijón, Alfonso & Molina-Solana, Miguel & Gómez-Romero, Juan, 2023. "Physics-informed neural networks for data-driven simulation: Advantages, limitations, and opportunities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 610(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:180:y:2024:i:c:s0960077924000870. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.