IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-26405-6.html
   My bibliography  Save this article

Longitudinal functional imaging of VIP interneurons reveals sup-population specific effects of stroke that are rescued with chemogenetic therapy

Author

Listed:
  • Mohamad Motaharinia

    (Division of Medical Sciences, University of Victoria)

  • Kim Gerrow

    (Division of Medical Sciences, University of Victoria)

  • Roobina Boghozian

    (Division of Medical Sciences, University of Victoria)

  • Emily White

    (Division of Medical Sciences, University of Victoria)

  • Sun-Eui Choi

    (Division of Medical Sciences, University of Victoria)

  • Kerry R. Delaney

    (University of Victoria)

  • Craig E. Brown

    (Division of Medical Sciences, University of Victoria
    University of Victoria
    University of British Columbia)

Abstract

Stroke profoundly disrupts cortical excitability which impedes recovery, but how it affects the function of specific inhibitory interneurons, or subpopulations therein, is poorly understood. Interneurons expressing vasoactive intestinal peptide (VIP) represent an intriguing stroke target because they can regulate cortical excitability through disinhibition. Here we chemogenetically augmented VIP interneuron excitability in a murine model of photothrombotic stroke and show that it enhances somatosensory responses and improves recovery of paw function. Using longitudinal calcium imaging, we discovered that stroke primarily disrupts the fidelity (fraction of responsive trials) and predictability of sensory responses within a subset of highly active VIP neurons. Partial recovery of responses occurred largely within these active neurons and was not accompanied by the recruitment of minimally active neurons. Importantly, chemogenetic stimulation preserved sensory response fidelity and predictability in highly active neurons. These findings provide a new depth of understanding into how stroke and prospective therapies (chemogenetics), can influence subpopulations of inhibitory interneurons.

Suggested Citation

  • Mohamad Motaharinia & Kim Gerrow & Roobina Boghozian & Emily White & Sun-Eui Choi & Kerry R. Delaney & Craig E. Brown, 2021. "Longitudinal functional imaging of VIP interneurons reveals sup-population specific effects of stroke that are rescued with chemogenetic therapy," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26405-6
    DOI: 10.1038/s41467-021-26405-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-26405-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-26405-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. L. Caracciolo & M. Marosi & J. Mazzitelli & S. Latifi & Y. Sano & L. Galvan & R. Kawaguchi & S. Holley & M. S. Levine & G. Coppola & C. Portera-Cailliau & A. J. Silva & S. T. Carmichael, 2018. "CREB controls cortical circuit plasticity and functional recovery after stroke," Nature Communications, Nature, vol. 9(1), pages 1-16, December.
    2. William A. Zeiger & Máté Marosi & Satvir Saggi & Natalie Noble & Isa Samad & Carlos Portera-Cailliau, 2021. "Barrel cortex plasticity after photothrombotic stroke involves potentiating responses of pre-existing circuits but not functional remapping to new circuits," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    3. Kelly A. Tennant & Stephanie L. Taylor & Emily R. White & Craig E. Brown, 2017. "Optogenetic rewiring of thalamocortical circuits to restore function in the stroke injured brain," Nature Communications, Nature, vol. 8(1), pages 1-14, August.
    4. Hyun-Jae Pi & Balázs Hangya & Duda Kvitsiani & Joshua I. Sanders & Z. Josh Huang & Adam Kepecs, 2013. "Cortical interneurons that specialize in disinhibitory control," Nature, Nature, vol. 503(7477), pages 521-524, November.
    5. Daniel Huber & Leopoldo Petreanu & Nima Ghitani & Sachin Ranade & Tomáš Hromádka & Zach Mainen & Karel Svoboda, 2008. "Sparse optical microstimulation in barrel cortex drives learned behaviour in freely moving mice," Nature, Nature, vol. 451(7174), pages 61-64, January.
    6. Simon Peron & Ravi Pancholi & Bettina Voelcker & Jason D. Wittenbach & H. Freyja Ólafsdóttir & Jeremy Freeman & Karel Svoboda, 2020. "Recurrent interactions in local cortical circuits," Nature, Nature, vol. 579(7798), pages 256-259, March.
    7. Andrew N. Clarkson & Ben S. Huang & Sarah E. MacIsaac & Istvan Mody & S. Thomas Carmichael, 2010. "Reducing excessive GABA-mediated tonic inhibition promotes functional recovery after stroke," Nature, Nature, vol. 468(7321), pages 305-309, November.
    8. A. S. Wahl & U. Büchler & A. Brändli & B. Brattoli & S. Musall & H. Kasper & B. V. Ineichen & F. Helmchen & B. Ommer & M. E. Schwab, 2017. "Optogenetically stimulating intact rat corticospinal tract post-stroke restores motor control through regionalized functional circuit formation," Nature Communications, Nature, vol. 8(1), pages 1-16, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ravi Pancholi & Lauren Ryan & Simon Peron, 2023. "Learning in a sensory cortical microstimulation task is associated with elevated representational stability," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Bettina Voelcker & Ravi Pancholi & Simon Peron, 2022. "Transformation of primary sensory cortical representations from layer 4 to layer 2," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Michael R. Williamson & Stephanie P. Le & Ronald L. Franzen & Nicole A. Donlan & Jill L. Rosow & Mathilda S. Nicot-Cartsonis & Alexis Cervantes & Benjamin Deneen & Andrew K. Dunn & Theresa A. Jones & , 2023. "Subventricular zone cytogenesis provides trophic support for neural repair in a mouse model of stroke," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    4. Tristan G. Heintz & Antonio J. Hinojosa & Sina E. Dominiak & Leon Lagnado, 2022. "Opposite forms of adaptation in mouse visual cortex are controlled by distinct inhibitory microcircuits," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    5. Robert Legenstein & Wolfgang Maass, 2014. "Ensembles of Spiking Neurons with Noise Support Optimal Probabilistic Inference in a Dynamically Changing Environment," PLOS Computational Biology, Public Library of Science, vol. 10(10), pages 1-27, October.
    6. Hyunsoo Yim & Daniel T. Choe & J. Alexander Bae & Myung-kyu Choi & Hae-Mook Kang & Ken C. Q. Nguyen & Soungyub Ahn & Sang-kyu Bahn & Heeseung Yang & David H. Hall & Jinseop S. Kim & Junho Lee, 2024. "Comparative connectomics of dauer reveals developmental plasticity," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    7. XiaoYuan Li & XiaoLi Yang & ZhongKui Sun, 2020. "Alpha rhythm slowing in a modified thalamo-cortico-thalamic model related with Alzheimer’s disease," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-22, March.
    8. Shinichiro Kira & Houman Safaai & Ari S. Morcos & Stefano Panzeri & Christopher D. Harvey, 2023. "A distributed and efficient population code of mixed selectivity neurons for flexible navigation decisions," Nature Communications, Nature, vol. 14(1), pages 1-28, December.
    9. Lloyd E. Russell & Mehmet Fişek & Zidan Yang & Lynn Pei Tan & Adam M. Packer & Henry W. P. Dalgleish & Selmaan N. Chettih & Christopher D. Harvey & Michael Häusser, 2024. "The influence of cortical activity on perception depends on behavioral state and sensory context," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    10. Xin Wei Chia & Jian Kwang Tan & Lee Fang Ang & Tsukasa Kamigaki & Hiroshi Makino, 2023. "Emergence of cortical network motifs for short-term memory during learning," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    11. Yan, Luyao & Zhang, Honghui & Sun, Zhongkui & Liu, Shuang & Liu, Yuanyuan & Xiao, Pengcheng, 2022. "Optimization of stimulation waveforms for regulating spike-wave discharges in a thalamocortical model," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    12. Zhihui Wang & Manhong Xie, 2023. "Kinetic analysis of spike and wave discharge in a neural mass model," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(7), pages 1-12, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26405-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.