IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-26363-z.html
   My bibliography  Save this article

MCAs in Arabidopsis are Ca2+-permeable mechanosensitive channels inherently sensitive to membrane tension

Author

Listed:
  • Kenjiro Yoshimura

    (Shibaura Institute of Technology)

  • Kazuko Iida

    (Tokyo Gakugei University
    Tokyo Metropolitan Institute of Medical Science)

  • Hidetoshi Iida

    (Tokyo Gakugei University)

Abstract

Mechanosensitive (MS) ion channels respond to mechanical stress and convert it into intracellular electric and ionic signals. Five MS channel families have been identified in plants, including the Mid1-Complementing Activity (MCA) channel; however, its activation mechanisms have not been elucidated in detail. We herein demonstrate that the MCA2 channel is a Ca2+-permeable MS channel that is directly activated by membrane tension. The N-terminal 173 residues of MCA1 and MCA2 were synthesized in vitro, purified, and reconstituted into artificial liposomal membranes. Liposomes reconstituted with MCA1(1-173) or MCA2(1-173) mediate Ca2+ influx and the application of pressure to the membrane reconstituted with MCA2(1-173) elicits channel currents. This channel is also activated by voltage. Blockers for MS channels inhibit activation by stretch, but not by voltage. Since MCA proteins are found exclusively in plants, these results suggest that MCA represent plant-specific MS channels that open directly with membrane tension.

Suggested Citation

  • Kenjiro Yoshimura & Kazuko Iida & Hidetoshi Iida, 2021. "MCAs in Arabidopsis are Ca2+-permeable mechanosensitive channels inherently sensitive to membrane tension," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26363-z
    DOI: 10.1038/s41467-021-26363-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-26363-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-26363-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yoshitaka Nakayama & Kenjiro Yoshimura & Hidetoshi Iida, 2012. "Organellar mechanosensitive channels in fission yeast regulate the hypo-osmotic shock response," Nature Communications, Nature, vol. 3(1), pages 1-10, January.
    2. Kei Saotome & Swetha E. Murthy & Jennifer M. Kefauver & Tess Whitwam & Ardem Patapoutian & Andrew B. Ward, 2018. "Structure of the mechanically activated ion channel Piezo1," Nature, Nature, vol. 554(7693), pages 481-486, February.
    3. Fang Yuan & Huimin Yang & Yan Xue & Dongdong Kong & Rui Ye & Chijun Li & Jingyuan Zhang & Lynn Theprungsirikul & Tayler Shrift & Bryan Krichilsky & Douglas M. Johnson & Gary B. Swift & Yikun He & Jame, 2014. "OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis," Nature, Nature, vol. 514(7522), pages 367-371, October.
    4. Eduardo Perozo & D. Marien Cortes & Pornthep Sompornpisut & Anna Kloda & Boris Martinac, 2002. "Open channel structure of MscL and the gating mechanism of mechanosensitive channels," Nature, Nature, vol. 418(6901), pages 942-948, August.
    5. Thomas M. Suchyna & Sonya E. Tape & Roger E. Koeppe & Olaf S. Andersen & Frederick Sachs & Philip A. Gottlieb, 2004. "Bilayer-dependent inhibition of mechanosensitive channels by neuroactive peptide enantiomers," Nature, Nature, vol. 430(6996), pages 235-240, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jingying Zhang & Grigory Maksaev & Peng Yuan, 2023. "Open structure and gating of the Arabidopsis mechanosensitive ion channel MSL10," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Chang Zhao & Parker D. Webster & Alexis Angeli & Francesco Tombola, 2023. "Mechanically-primed voltage-gated proton channels from angiosperm plants," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jonathan Mount & Grigory Maksaev & Brock T. Summers & James A. J. Fitzpatrick & Peng Yuan, 2022. "Structural basis for mechanotransduction in a potassium-dependent mechanosensitive ion channel," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Jingying Zhang & Grigory Maksaev & Peng Yuan, 2023. "Open structure and gating of the Arabidopsis mechanosensitive ion channel MSL10," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Shilong Yang & Xinwen Miao & Steven Arnold & Boxuan Li & Alan T. Ly & Huan Wang & Matthew Wang & Xiangfu Guo & Medha M. Pathak & Wenting Zhao & Charles D. Cox & Zheng Shi, 2022. "Membrane curvature governs the distribution of Piezo1 in live cells," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    4. Xin-yu He & Xiao Fan & Lei Qu & Xiang Wang & Li Jiang & Ling-jie Sang & Cheng-yu Shi & Siyi Lin & Jie-cheng Yang & Zuo-zhen Yang & Kai Lei & Jun-hong Li & Huai-qiang Ju & Qingfeng Yan & Jian Liu & Fud, 2023. "LncRNA modulates Hippo-YAP signaling to reprogram iron metabolism," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    5. Nathalia G. Amado & Elena D. Nosyreva & David Thompson & Thomas J. Egeland & Osita W. Ogujiofor & Michelle Yang & Alexandria N. Fusco & Niccolo Passoni & Jeremy Mathews & Brandi Cantarel & Linda A. Ba, 2024. "PIEZO1 loss-of-function compound heterozygous mutations in the rare congenital human disorder Prune Belly Syndrome," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Francisco Andrés Peralta & Mélaine Balcon & Adeline Martz & Deniza Biljali & Federico Cevoli & Benoit Arnould & Antoine Taly & Thierry Chataigneau & Thomas Grutter, 2023. "Optical control of PIEZO1 channels," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    7. Josep Vilarrasa-Blasi & Tamara Vellosillo & Robert E. Jinkerson & Friedrich Fauser & Tingting Xiang & Benjamin B. Minkoff & Lianyong Wang & Kiril Kniazev & Michael Guzman & Jacqueline Osaki & Gregory , 2024. "Multi-omics analysis of green lineage osmotic stress pathways unveils crucial roles of different cellular compartments," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    8. Mingfeng Zhang & Yuanyue Shan & Charles D. Cox & Duanqing Pei, 2023. "A mechanical-coupling mechanism in OSCA/TMEM63 channel mechanosensitivity," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    9. Yuqi Qin & Daqi Yu & Dan Wu & Jiangqing Dong & William Thomas Li & Chang Ye & Kai Chit Cheung & Yingyi Zhang & Yun Xu & YongQiang Wang & Yun Stone Shi & Shangyu Dang, 2023. "Cryo-EM structure of TMEM63C suggests it functions as a monomer," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    10. Amandeep Kaur & Madhu & Alok Sharma & Kashmir Singh & Santosh Kumar Upadhyay, 2023. "Exploration of Piezo Channels in Bread Wheat ( Triticum aestivum L.)," Agriculture, MDPI, vol. 13(4), pages 1-16, March.
    11. Tristan Ursell & Kerwyn Casey Huang & Eric Peterson & Rob Phillips, 2007. "Cooperative Gating and Spatial Organization of Membrane Proteins through Elastic Interactions," PLOS Computational Biology, Public Library of Science, vol. 3(5), pages 1-10, May.
    12. Yuanyue Shan & Mengmeng Zhang & Meiyu Chen & Xinyi Guo & Ying Li & Mingfeng Zhang & Duanqing Pei, 2024. "Activation mechanisms of dimeric mechanosensitive OSCA/TMEM63 channels," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    13. Johanna L. Syrjänen & Max Epstein & Ricardo Gómez & Hiro Furukawa, 2023. "Structure of human CALHM1 reveals key locations for channel regulation and blockade by ruthenium red," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    14. Jin Li & William D. Jamieson & Pantelitsa Dimitriou & Wen Xu & Paul Rohde & Boris Martinac & Matthew Baker & Bruce W. Drinkwater & Oliver K. Castell & David A. Barrow, 2022. "Building programmable multicompartment artificial cells incorporating remotely activated protein channels using microfluidics and acoustic levitation," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    15. Songling Li & Bingxue Li & Li Gao & Jingwen Wang & Zhiqiang Yan, 2022. "Humidity response in Drosophila olfactory sensory neurons requires the mechanosensitive channel TMEM63," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26363-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.