OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis
Author
Abstract
Suggested Citation
DOI: 10.1038/nature13593
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jingying Zhang & Grigory Maksaev & Peng Yuan, 2023. "Open structure and gating of the Arabidopsis mechanosensitive ion channel MSL10," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
- Josep Vilarrasa-Blasi & Tamara Vellosillo & Robert E. Jinkerson & Friedrich Fauser & Tingting Xiang & Benjamin B. Minkoff & Lianyong Wang & Kiril Kniazev & Michael Guzman & Jacqueline Osaki & Gregory , 2024. "Multi-omics analysis of green lineage osmotic stress pathways unveils crucial roles of different cellular compartments," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
- Nirmala Friyanti Devy & Siti Subandiyah & Sri Widyaningsih & Hardiyanto Hardiyanto & Farida Yulianti & Dita Agisimanto & Agus Sugiyatno & Mutia Dwiastuti, . "The effect of rootstocks on morphological, physiological, and gene expression characters of citrus seedlings grown under drought condition," Horticultural Science, Czech Academy of Agricultural Sciences, vol. 0.
- Kenjiro Yoshimura & Kazuko Iida & Hidetoshi Iida, 2021. "MCAs in Arabidopsis are Ca2+-permeable mechanosensitive channels inherently sensitive to membrane tension," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
- Yuanyue Shan & Mengmeng Zhang & Meiyu Chen & Xinyi Guo & Ying Li & Mingfeng Zhang & Duanqing Pei, 2024. "Activation mechanisms of dimeric mechanosensitive OSCA/TMEM63 channels," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
- Yuqi Qin & Daqi Yu & Dan Wu & Jiangqing Dong & William Thomas Li & Chang Ye & Kai Chit Cheung & Yingyi Zhang & Yun Xu & YongQiang Wang & Yun Stone Shi & Shangyu Dang, 2023. "Cryo-EM structure of TMEM63C suggests it functions as a monomer," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
- Songling Li & Bingxue Li & Li Gao & Jingwen Wang & Zhiqiang Yan, 2022. "Humidity response in Drosophila olfactory sensory neurons requires the mechanosensitive channel TMEM63," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
- Mingfeng Zhang & Yuanyue Shan & Charles D. Cox & Duanqing Pei, 2023. "A mechanical-coupling mechanism in OSCA/TMEM63 channel mechanosensitivity," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:514:y:2014:i:7522:d:10.1038_nature13593. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.