IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-26316-6.html
   My bibliography  Save this article

Coordination tailoring of Cu single sites on C3N4 realizes selective CO2 hydrogenation at low temperature

Author

Listed:
  • Tang Yang

    (Xiamen University)

  • Xinnan Mao

    (Soochow University
    Guangdong University of Technology)

  • Ying Zhang

    (Xiamen University)

  • Xiaoping Wu

    (Guangdong University of Technology)

  • Lu Wang

    (Soochow University)

  • Mingyu Chu

    (Soochow University
    Guangdong University of Technology)

  • Chih-Wen Pao

    (National Synchrotron Radiation Research Center)

  • Shize Yang

    (Arizona State University)

  • Yong Xu

    (Guangdong University of Technology)

  • Xiaoqing Huang

    (Xiamen University)

Abstract

CO2 hydrogenation has attracted great attention, yet the quest for highly-efficient catalysts is driven by the current disadvantages of poor activity, low selectivity, and ambiguous structure-performance relationship. We demonstrate here that C3N4-supported Cu single atom catalysts with tailored coordination structures, namely, Cu–N4 and Cu–N3, can serve as highly selective and active catalysts for CO2 hydrogenation at low temperature. The modulation of the coordination structure of Cu single atom is readily realized by simply altering the treatment parameters. Further investigations reveal that Cu–N4 favors CO2 hydrogenation to form CH3OH via the formate pathway, while Cu–N3 tends to catalyze CO2 hydrogenation to produce CO via the reverse water-gas-shift (RWGS) pathway. Significantly, the CH3OH productivity and selectivity reach 4.2 mmol g–1 h–1 and 95.5%, respectively, for Cu–N4 single atom catalyst. We anticipate this work will promote the fundamental researches on the structure-performance relationship of catalysts.

Suggested Citation

  • Tang Yang & Xinnan Mao & Ying Zhang & Xiaoping Wu & Lu Wang & Mingyu Chu & Chih-Wen Pao & Shize Yang & Yong Xu & Xiaoqing Huang, 2021. "Coordination tailoring of Cu single sites on C3N4 realizes selective CO2 hydrogenation at low temperature," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26316-6
    DOI: 10.1038/s41467-021-26316-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-26316-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-26316-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yizhen Chen & Hongliang Li & Wanghui Zhao & Wenbo Zhang & Jiawei Li & Wei Li & Xusheng Zheng & Wensheng Yan & Wenhua Zhang & Junfa Zhu & Rui Si & Jie Zeng, 2019. "Optimizing reaction paths for methanol synthesis from CO2 hydrogenation via metal-ligand cooperativity," Nature Communications, Nature, vol. 10(1), pages 1-8, December.
    2. Xiao Zhang & Xueqian Li & Du Zhang & Neil Qiang Su & Weitao Yang & Henry O. Everitt & Jie Liu, 2017. "Product selectivity in plasmonic photocatalysis for carbon dioxide hydrogenation," Nature Communications, Nature, vol. 8(1), pages 1-9, April.
    3. Alexander Schoedel & Zhe Ji & Omar M. Yaghi, 2016. "The role of metal–organic frameworks in a carbon-neutral energy cycle," Nature Energy, Nature, vol. 1(4), pages 1-13, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan, Xianyao & Duan, Chenyu & Yu, Shuihua & Dai, Bing & Sun, Chaoying & Chu, Huaqiang, 2024. "Recent advances on CO2 reduction reactions using single-atom catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Canyu Hu & Xing Chen & Jingxiang Low & Yaw-Wen Yang & Hao Li & Di Wu & Shuangming Chen & Jianbo Jin & He Li & Huanxin Ju & Chia-Hsin Wang & Zhou Lu & Ran Long & Li Song & Yujie Xiong, 2023. "Near-infrared-featured broadband CO2 reduction with water to hydrocarbons by surface plasmon," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Wenjin Guo & Guangfang Li & Chengbo Bai & Qiong Liu & Fengxi Chen & Rong Chen, 2024. "General synthesis and atomic arrangement identification of ordered Bi–Pd intermetallics with tunable electrocatalytic CO2 reduction selectivity," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Yao-Jie Lei & Xinxin Lu & Hirofumi Yoshikawa & Daiju Matsumura & Yameng Fan & Lingfei Zhao & Jiayang Li & Shijian Wang & Qinfen Gu & Hua-Kun Liu & Shi-Xue Dou & Shanmukaraj Devaraj & Teofilo Rojo & We, 2024. "Understanding the charge transfer effects of single atoms for boosting the performance of Na-S batteries," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Guo, Yang & Li, Tengfei & Li, Dan & Cheng, Jiahui, 2024. "Efficient reduction of CO2 to high value-added compounds via photo-thermal catalysis: Mechanisms, catalysts and apparatuses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    5. Min Chen & Longgang Liu & Xueyan Chen & Xiaoxiao Qin & Jianghao Zhang & Shaohua Xie & Fudong Liu & Hong He & Changbin Zhang, 2024. "Sulfate residuals on Ru catalysts switch CO2 reduction from methanation to reverse water-gas shift reaction," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    6. Yalin Guo & Yike Huang & Bin Zeng & Bing Han & Mohcin AKRI & Ming Shi & Yue Zhao & Qinghe Li & Yang Su & Lin Li & Qike Jiang & Yi-Tao Cui & Lei Li & Rengui Li & Botao Qiao & Tao Zhang, 2022. "Photo-thermo semi-hydrogenation of acetylene on Pd1/TiO2 single-atom catalyst," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    7. Chen, Xing & Lin, Boqiang, 2021. "Towards carbon neutrality by implementing carbon emissions trading scheme: Policy evaluation in China," Energy Policy, Elsevier, vol. 157(C).
    8. Gunjan Sharma & Rishi Verma & Shinya Masuda & Khaled Mohamed Badawy & Nirpendra Singh & Tatsuya Tsukuda & Vivek Polshettiwar, 2024. "Pt-doped Ru nanoparticles loaded on ‘black gold’ plasmonic nanoreactors as air stable reduction catalysts," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    9. Sung Hyun Park & Sukyoung Kim & Jae Whan Park & Seunghee Kim & Wonsuk Cha & Joonseok Lee, 2024. "In-situ and wavelength-dependent photocatalytic strain evolution of a single Au nanoparticle on a TiO2 film," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26316-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.