IDEAS home Printed from https://ideas.repec.org/a/nat/natcli/v13y2023i2d10.1038_s41558-022-01540-0.html
   My bibliography  Save this article

Cost-effective adaptation strategies to rising river flood risk in Europe

Author

Listed:
  • Francesco Dottori

    (European Commission, Joint Research Centre (JRC)
    CIMA Research Foundation)

  • Lorenzo Mentaschi

    (European Commission, Joint Research Centre (JRC)
    University of Bologna, Department of Physics and Astronomy ‘Augusto Righi’ (DIFA))

  • Alessandra Bianchi

    (FINCONS SPA)

  • Lorenzo Alfieri

    (CIMA Research Foundation)

  • Luc Feyen

    (European Commission, Joint Research Centre (JRC))

Abstract

River flood risk in Europe could rise to unprecedented levels due to global warming and continued development in flood-prone areas. Here, we appraise the potential of four key adaptation strategies to reduce flood risk across Europe based on flood risk modelling and cost–benefit analysis. We find that reducing flood peaks using detention areas is economically the most attractive option. In a scenario without climate mitigation (3 °C global warming), they can lower projected flood losses in Europe by 2100 from €44(30–61) billion to €8.1(5.5–10.7) billion per year and lower population exposed by 84% (75–90%) or achieve a risk level comparable to today. The economic investment required over 2020–2100 would provide a return of €4(3.5–6.3) for each €1 invested. The risk reduction potential of strengthening of dykes is somewhat lower, at 70% (59–83%) for a comparable annual investment. Implementing building-based flood proofing and relocation measures is less cost-effective but can reduce impacts in localized areas.

Suggested Citation

  • Francesco Dottori & Lorenzo Mentaschi & Alessandra Bianchi & Lorenzo Alfieri & Luc Feyen, 2023. "Cost-effective adaptation strategies to rising river flood risk in Europe," Nature Climate Change, Nature, vol. 13(2), pages 196-202, February.
  • Handle: RePEc:nat:natcli:v:13:y:2023:i:2:d:10.1038_s41558-022-01540-0
    DOI: 10.1038/s41558-022-01540-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41558-022-01540-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41558-022-01540-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chris Jacobs-Crisioni & Vasco Diogo & Carolina Perpina Castillo & Claudia Baranzelli & Filipe Batista e Silva & Konstantin Rosina & Boyan Kavalov & Carlo Lavalle, 2017. "The LUISA Territorial Reference Scenario 2017: A technical description," JRC Research Reports JRC108163, Joint Research Centre.
    2. Jan Huizinga & Hans de Moel & Wojciech Szewczyk, 2017. "Global flood depth-damage functions: Methodology and the database with guidelines," JRC Research Reports JRC105688, Joint Research Centre.
    3. Brenden Jongman & Stefan Hochrainer-Stigler & Luc Feyen & Jeroen C. J. H. Aerts & Reinhard Mechler & W. J. Wouter Botzen & Laurens M. Bouwer & Georg Pflug & Rodrigo Rojas & Philip J. Ward, 2014. "Increasing stress on disaster-risk finance due to large floods," Nature Climate Change, Nature, vol. 4(4), pages 264-268, April.
    4. Andrea Saltelli & Gabriele Bammer & Isabelle Bruno & Erica Charters & Monica Di Fiore & Emmanuel Didier & Wendy Nelson Espeland & John Kay & Samuele Lo Piano & Deborah Mayo & Roger Pielke Jr & Tommaso, 2020. "Five ways to ensure that models serve society: a manifesto," Nature, Nature, vol. 582(7813), pages 482-484, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abbas, Shahbaz & Rao, Abdur Rehman Bin Nasir & Khattak, Farrukh & Ahmad, Yasir, 2024. "Revolutionising sustainability using a new triplet: A system dynamic model," Ecological Modelling, Elsevier, vol. 492(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Julien Boulange & Yukiko Hirabayashi & Masahiro Tanoue & Toshinori Yamada, 2023. "Quantitative evaluation of flood damage methodologies under a portfolio of adaptation scenarios," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(3), pages 1855-1879, September.
    2. Allan Beltrán & David Maddison & Robert J. R. Elliott, 2018. "Assessing the Economic Benefits of Flood Defenses: A Repeat‐Sales Approach," Risk Analysis, John Wiley & Sons, vol. 38(11), pages 2340-2367, November.
    3. Lu, Xuefei & Borgonovo, Emanuele, 2023. "Global sensitivity analysis in epidemiological modeling," European Journal of Operational Research, Elsevier, vol. 304(1), pages 9-24.
    4. Jantsje M. Mol & W. J. Wouter Botzen & Julia E. Blasch & Hans de Moel, 2020. "Insights into Flood Risk Misperceptions of Homeowners in the Dutch River Delta," Risk Analysis, John Wiley & Sons, vol. 40(7), pages 1450-1468, July.
    5. Belinda Storey & Sally Owen & Christian Zammit & Ilan Noy, 2024. "Insurance retreat in residential properties from future sea level rise in Aotearoa New Zealand," Climatic Change, Springer, vol. 177(3), pages 1-21, March.
    6. Guzmics Sándor & Pflug Georg Ch., 2020. "A new extreme value copula and new families of univariate distributions based on Freund’s exponential model," Dependence Modeling, De Gruyter, vol. 8(1), pages 330-360, January.
    7. Mohamed Kefi & Binaya Kumar Mishra & Yoshifumi Masago & Kensuke Fukushi, 2020. "Analysis of flood damage and influencing factors in urban catchments: case studies in Manila, Philippines, and Jakarta, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(3), pages 2461-2487, December.
    8. Ruben Prütz & Peter Månsson, 2021. "A GIS-based approach to compare economic damages of fluvial flooding in the Neckar River basin under current conditions and future scenarios," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(2), pages 1807-1834, September.
    9. Michele Loberto & Matteo Spuri, 2023. "The impact of flood risk on real estate wealth in Italy," Questioni di Economia e Finanza (Occasional Papers) 768, Bank of Italy, Economic Research and International Relations Area.
    10. Tesselaar, Max & Botzen, W.J. Wouter & Robinson, Peter J. & Aerts, Jeroen C.J.H. & Zhou, Fujin, 2022. "Charity hazard and the flood insurance protection gap: An EU scale assessment under climate change," Ecological Economics, Elsevier, vol. 193(C).
    11. Nicholas R. Magliocca, 2020. "Agent-Based Modeling for Integrating Human Behavior into the Food–Energy–Water Nexus," Land, MDPI, vol. 9(12), pages 1-25, December.
    12. Tovar Reaños, Miguel A., 2021. "Floods, flood policies and changes in welfare and inequality: Evidence from Germany," Ecological Economics, Elsevier, vol. 180(C).
    13. Syed Abu Shoaib & Mohammad Zaved Kaiser Khan & Nahid Sultana & Taufique H. Mahmood, 2021. "Quantifying Uncertainty in Food Security Modeling," Agriculture, MDPI, vol. 11(1), pages 1-16, January.
    14. Weili Duan & Bin He & Daniel Nover & Jingli Fan & Guishan Yang & Wen Chen & Huifang Meng & Chuanming Liu, 2016. "Floods and associated socioeconomic damages in China over the last century," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(1), pages 401-413, May.
    15. Tian Liu & Peijun Shi & Jian Fang, 2022. "Spatiotemporal variation in global floods with different affected areas and the contribution of influencing factors to flood-induced mortality (1985–2019)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(3), pages 2601-2625, April.
    16. Cuneyt Yavuz & Elcin Kentel & Mustafa M. Aral, 2020. "Tsunami risk assessment: economic, environmental and social dimensions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(2), pages 1413-1442, November.
    17. Steven Koop & Cornelis Leeuwen, 2015. "Assessment of the Sustainability of Water Resources Management: A Critical Review of the City Blueprint Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(15), pages 5649-5670, December.
    18. Wen, Xin & Heinisch, Verena & Müller, Jonas & Sasse, Jan-Philipp & Trutnevyte, Evelina, 2023. "Comparison of statistical and optimization models for projecting future PV installations at a sub-national scale," Energy, Elsevier, vol. 285(C).
    19. Julio G. Fournier Gabela & Luis Sarmiento, 2020. "Kurzarbeit and Natural Disasters: How Effective Are Short-Time Working Allowances in Avoiding Unemployment?," Discussion Papers of DIW Berlin 1909, DIW Berlin, German Institute for Economic Research.
    20. Ioannidis, John P.A. & Cripps, Sally & Tanner, Martin A., 2022. "Forecasting for COVID-19 has failed," International Journal of Forecasting, Elsevier, vol. 38(2), pages 423-438.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:13:y:2023:i:2:d:10.1038_s41558-022-01540-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.