IDEAS home Printed from https://ideas.repec.org/a/mtn/ancoec/040202.html
   My bibliography  Save this article

Efficiency and local optimality of nonparametric tests based on U- and V-statistics

Author

Listed:
  • Yakov Y. Nikitin
  • Irina Peaucelle

Abstract

No abstract is available for this item.

Suggested Citation

  • Yakov Y. Nikitin & Irina Peaucelle, 2004. "Efficiency and local optimality of nonparametric tests based on U- and V-statistics," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(2), pages 185-200.
  • Handle: RePEc:mtn:ancoec:040202
    as

    Download full text from publisher

    File URL: https://www.dss.uniroma1.it/RePec/mtn/articoli/2004-2-185-200.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Arthur Pewsey, 2000. "Problems of inference for Azzalini's skewnormal distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 27(7), pages 859-870.
    2. Alessandra Durio & Yacov Yu. Nikitin, 2001. "Local asympotic efficiency of some goodness-of-fit tests under skew alternatives," ICER Working Papers 04-2001, ICER - International Centre for Economic Research.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jovanović, Milan & Milošević, Bojana & Nikitin, Ya. Yu. & Obradović, Marko & Volkova, K. Yu., 2015. "Tests of exponentiality based on Arnold–Villasenor characterization and their efficiencies," Computational Statistics & Data Analysis, Elsevier, vol. 90(C), pages 100-113.
    2. Withers, Christopher S. & Nadarajah, Saralees, 2013. "Bayesian efficiency," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1203-1212.
    3. Bojana Milošević, 2016. "Asymptotic efficiency of new exponentiality tests based on a characterization," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(2), pages 221-236, February.
    4. Bojana Milošević & Marko Obradović, 2016. "New class of exponentiality tests based on U-empirical Laplace transform," Statistical Papers, Springer, vol. 57(4), pages 977-990, December.
    5. James Allison & Bojana Milošević & Marko Obradović & Marius Smuts, 2022. "Distribution-free goodness-of-fit tests for the Pareto distribution based on a characterization," Computational Statistics, Springer, vol. 37(1), pages 403-418, March.
    6. Milošević, B. & Obradović, M., 2016. "Characterization based symmetry tests and their asymptotic efficiencies," Statistics & Probability Letters, Elsevier, vol. 119(C), pages 155-162.
    7. Ya. Yu. Nikitin, 2018. "Local exact Bahadur efficiencies of two scale-free tests of normality based on a recent characterization," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(6), pages 609-618, August.
    8. Simos Meintanis & Bojana Milošević & Marko Obradović, 2023. "Bahadur efficiency for certain goodness-of-fit tests based on the empirical characteristic function," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(7), pages 723-751, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Henze, Norbert & Nikitin, Yakov & Ebner, Bruno, 2009. "Integral distribution-free statistics of Lp-type and their asymptotic comparison," Computational Statistics & Data Analysis, Elsevier, vol. 53(9), pages 3426-3438, July.
    2. Padilla, Juan L. & Azevedo, Caio L.N. & Lachos, Victor H., 2018. "Multidimensional multiple group IRT models with skew normal latent trait distributions," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 250-268.
    3. Panagiotelis, Anastasios & Smith, Michael, 2010. "Bayesian skew selection for multivariate models," Computational Statistics & Data Analysis, Elsevier, vol. 54(7), pages 1824-1839, July.
    4. Tohid Bahrami & Hossein Jabbari Khamnei & Mehrdad Lakestani & B. M. Golam Kibria, 2024. "New Vessel Extraction Method by Using Skew Normal Distribution for MRA Images," Stats, MDPI, vol. 7(1), pages 1-17, February.
    5. Arthur Pewsey & Héctor Gómez & Heleno Bolfarine, 2012. "Likelihood-based inference for power distributions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(4), pages 775-789, December.
    6. Arthur Pewsey, 2018. "Parametric bootstrap edf-based goodness-of-fit testing for sinh–arcsinh distributions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(1), pages 147-172, March.
    7. Adelchi Azzalini & Monica Chiogna, 2004. "Some results on the stress–strength model for skew-normal variates," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 315-326.
    8. Guillermo Martínez-Flórez & Roger Tovar-Falón & Carlos Barrera-Causil, 2024. "Dichotomous Proportional Hazard Regression Model: A Case Study on Students’ Dropout," Mathematics, MDPI, vol. 12(14), pages 1-14, July.
    9. Charemza, Wojciech & Díaz, Carlos & Makarova, Svetlana, 2019. "Quasi ex-ante inflation forecast uncertainty," International Journal of Forecasting, Elsevier, vol. 35(3), pages 994-1007.
    10. Wojciech Charemza & Carlos Diaz Vela & Svetlana Makarova, 2013. "Inflation fan charts, monetary policy and skew normal distribution," Discussion Papers in Economics 13/06, Division of Economics, School of Business, University of Leicester.
    11. Wojciech CHAREMZA & Carlos DÍAZ & Svetlana MAKAROVA, 2019. "Conditional Term Structure of Inflation Forecast Uncertainty: The Copula Approach," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(1), pages 5-18, March.
    12. David Elal-Olivero & Juan F. Olivares-Pacheco & Osvaldo Venegas & Heleno Bolfarine & Héctor W. Gómez, 2020. "On Properties of the Bimodal Skew-Normal Distribution and an Application," Mathematics, MDPI, vol. 8(5), pages 1-16, May.
    13. Corrado Crocetta & Nicola Loperfido, 2009. "Maximum likelihood estimation of correlation between maximal oxygen consumption and the 6-min walk test in patients with chronic heart failure," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(10), pages 1101-1108.
    14. Angela Montanari & Cinzia Viroli, 2010. "A skew-normal factor model for the analysis of student satisfaction towards university courses," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(3), pages 473-487.
    15. Dubey, Subodh & Bansal, Prateek & Daziano, Ricardo A. & Guerra, Erick, 2020. "A Generalized Continuous-Multinomial Response Model with a t-distributed Error Kernel," Transportation Research Part B: Methodological, Elsevier, vol. 133(C), pages 114-141.
    16. Ley, Christophe & Paindaveine, Davy, 2010. "On the singularity of multivariate skew-symmetric models," Journal of Multivariate Analysis, Elsevier, vol. 101(6), pages 1434-1444, July.
    17. Ahmed Hossain & Joseph Beyene, 2015. "Application of skew-normal distribution for detecting differential expression to microRNA data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(3), pages 477-491, March.
    18. Bojana Milošević & Marko Obradović, 2016. "Two-dimensional Kolmogorov-type goodness-of-fit tests based on characterisations and their asymptotic efficiencies," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(2), pages 413-427, June.
    19. Guillermo Martínez-Flórez & Roger Tovar-Falón & Víctor Leiva & Cecilia Castro, 2024. "Skew-Normal Inflated Models: Mathematical Characterization and Applications to Medical Data with Excess of Zeros and Ones," Mathematics, MDPI, vol. 12(16), pages 1-23, August.
    20. S. Cabras & M. E. Castellanos, 2009. "Default Bayesian goodness-of-fit tests for the skew-normal model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(2), pages 223-232.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mtn:ancoec:040202. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Marco Alfo' (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.