IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i14p2170-d1432913.html
   My bibliography  Save this article

Dichotomous Proportional Hazard Regression Model: A Case Study on Students’ Dropout

Author

Listed:
  • Guillermo Martínez-Flórez

    (Departamento de Matemáticas y Estadística, Universidad de Córdoba, Montería 230002, Colombia
    These authors contributed equally to this work.)

  • Roger Tovar-Falón

    (Departamento de Matemáticas y Estadística, Universidad de Córdoba, Montería 230002, Colombia
    These authors contributed equally to this work.)

  • Carlos Barrera-Causil

    (Grupo de Investigación Davinci, Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano, Medellín 050034, Colombia
    These authors contributed equally to this work.)

Abstract

In problems involving binary classification, researchers often encounter data suitable for modeling dichotomous responses. These scenarios include medical diagnostics, where outcomes are classified as “disease” or “no disease”, and credit scoring in finance, determining whether a loan applicant is “high risk” or “low risk”. Dichotomous response models are also useful in many other areas for estimating binary responses. The logistic regression model is one option for modeling dichotomous responses; however, other statistical models may be required to improve the quality of fits. In this paper, a new regression model is proposed for cases where the response variable is dichotomous. This novel, non-linear model is derived from the cumulative distribution function of the proportional hazard distribution, and is suitable for modeling binary responses. Statistical inference is performed using a classical approach with the maximum likelihood method for the proposed model. Additionally, it is demonstrated that the introduced model has a non-singular information matrix. The results of a simulation study, along with an application to student dropout data, show the great potential of the proposed model in practical and everyday situations.

Suggested Citation

  • Guillermo Martínez-Flórez & Roger Tovar-Falón & Carlos Barrera-Causil, 2024. "Dichotomous Proportional Hazard Regression Model: A Case Study on Students’ Dropout," Mathematics, MDPI, vol. 12(14), pages 1-14, July.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:14:p:2170-:d:1432913
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/14/2170/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/14/2170/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gauss M. Cordeiro & Maria Do Carmo S. Lima & Audrey H.M.A. Cysneiros & Marcelino A. R. Pascoa & Rodrigo R. Pescim & Edwin M. M. Ortega, 2016. "An extended Birnbaum–Saunders distribution: Theory, estimation, and applications," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 45(8), pages 2268-2297, April.
    2. Arthur Pewsey, 2000. "Problems of inference for Azzalini's skewnormal distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 27(7), pages 859-870.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Padilla, Juan L. & Azevedo, Caio L.N. & Lachos, Victor H., 2018. "Multidimensional multiple group IRT models with skew normal latent trait distributions," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 250-268.
    2. Panagiotelis, Anastasios & Smith, Michael, 2010. "Bayesian skew selection for multivariate models," Computational Statistics & Data Analysis, Elsevier, vol. 54(7), pages 1824-1839, July.
    3. Tohid Bahrami & Hossein Jabbari Khamnei & Mehrdad Lakestani & B. M. Golam Kibria, 2024. "New Vessel Extraction Method by Using Skew Normal Distribution for MRA Images," Stats, MDPI, vol. 7(1), pages 1-17, February.
    4. Arthur Pewsey & Héctor Gómez & Heleno Bolfarine, 2012. "Likelihood-based inference for power distributions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(4), pages 775-789, December.
    5. Arthur Pewsey, 2018. "Parametric bootstrap edf-based goodness-of-fit testing for sinh–arcsinh distributions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(1), pages 147-172, March.
    6. Adelchi Azzalini & Monica Chiogna, 2004. "Some results on the stress–strength model for skew-normal variates," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 315-326.
    7. Charemza, Wojciech & Díaz, Carlos & Makarova, Svetlana, 2019. "Quasi ex-ante inflation forecast uncertainty," International Journal of Forecasting, Elsevier, vol. 35(3), pages 994-1007.
    8. Wojciech Charemza & Carlos Diaz Vela & Svetlana Makarova, 2013. "Inflation fan charts, monetary policy and skew normal distribution," Discussion Papers in Economics 13/06, Division of Economics, School of Business, University of Leicester.
    9. Wojciech CHAREMZA & Carlos DÍAZ & Svetlana MAKAROVA, 2019. "Conditional Term Structure of Inflation Forecast Uncertainty: The Copula Approach," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(1), pages 5-18, March.
    10. David Elal-Olivero & Juan F. Olivares-Pacheco & Osvaldo Venegas & Heleno Bolfarine & Héctor W. Gómez, 2020. "On Properties of the Bimodal Skew-Normal Distribution and an Application," Mathematics, MDPI, vol. 8(5), pages 1-16, May.
    11. Corrado Crocetta & Nicola Loperfido, 2009. "Maximum likelihood estimation of correlation between maximal oxygen consumption and the 6-min walk test in patients with chronic heart failure," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(10), pages 1101-1108.
    12. Angela Montanari & Cinzia Viroli, 2010. "A skew-normal factor model for the analysis of student satisfaction towards university courses," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(3), pages 473-487.
    13. Dubey, Subodh & Bansal, Prateek & Daziano, Ricardo A. & Guerra, Erick, 2020. "A Generalized Continuous-Multinomial Response Model with a t-distributed Error Kernel," Transportation Research Part B: Methodological, Elsevier, vol. 133(C), pages 114-141.
    14. Ley, Christophe & Paindaveine, Davy, 2010. "On the singularity of multivariate skew-symmetric models," Journal of Multivariate Analysis, Elsevier, vol. 101(6), pages 1434-1444, July.
    15. Ahmed Hossain & Joseph Beyene, 2015. "Application of skew-normal distribution for detecting differential expression to microRNA data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(3), pages 477-491, March.
    16. Guillermo Martínez-Flórez & Roger Tovar-Falón & Víctor Leiva & Cecilia Castro, 2024. "Skew-Normal Inflated Models: Mathematical Characterization and Applications to Medical Data with Excess of Zeros and Ones," Mathematics, MDPI, vol. 12(16), pages 1-23, August.
    17. S. Cabras & M. E. Castellanos, 2009. "Default Bayesian goodness-of-fit tests for the skew-normal model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(2), pages 223-232.
    18. Wojciech Charemza & Carlos Diaz Vela & Svetlana Makarova, 2013. "Too many skew normal distributions? The practitioner’s perspective," Discussion Papers in Economics 13/07, Division of Economics, School of Business, University of Leicester.
    19. Andréas Heinen & Alfonso Valdesogo, 2022. "The Kendall and Spearman rank correlations of the bivariate skew normal distribution," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(4), pages 1669-1698, December.
    20. Yakov Y. Nikitin & Irina Peaucelle, 2004. "Efficiency and local optimality of nonparametric tests based on U- and V-statistics," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(2), pages 185-200.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:14:p:2170-:d:1432913. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.