IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v37y2022i1d10.1007_s00180-021-01126-y.html
   My bibliography  Save this article

Distribution-free goodness-of-fit tests for the Pareto distribution based on a characterization

Author

Listed:
  • James Allison

    (North-West University)

  • Bojana Milošević

    (University of Belgrade)

  • Marko Obradović

    (University of Belgrade)

  • Marius Smuts

    (North-West University)

Abstract

We propose three new classes of goodness-of-fit tests for the Pareto type I distribution based on a characterization. The asymptotic null distribution for the tests are derived and their Bahadur efficiencies are compared to the efficiencies of some of the existing tests. It is found that the new integral type test has superior local efficiencies amongst the new tests, and in general, has higher efficiencies than the competing tests considered. The finite-sample performance of the newly proposed tests is evaluated and compared to that of other existing tests by means of a Monte Carlo study. It is found that the new tests (especially the integral type tests) perform favourably compared to the other tests.

Suggested Citation

  • James Allison & Bojana Milošević & Marko Obradović & Marius Smuts, 2022. "Distribution-free goodness-of-fit tests for the Pareto distribution based on a characterization," Computational Statistics, Springer, vol. 37(1), pages 403-418, March.
  • Handle: RePEc:spr:compst:v:37:y:2022:i:1:d:10.1007_s00180-021-01126-y
    DOI: 10.1007/s00180-021-01126-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-021-01126-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-021-01126-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohamed E. Ghitany & Emilio Gómez-Déniz & Saralees Nadarajah, 2018. "A New Generalization of the Pareto Distribution and Its Application to Insurance Data," JRFM, MDPI, vol. 11(1), pages 1-14, February.
    2. Jovanović, Milan & Milošević, Bojana & Nikitin, Ya. Yu. & Obradović, Marko & Volkova, K. Yu., 2015. "Tests of exponentiality based on Arnold–Villasenor characterization and their efficiencies," Computational Statistics & Data Analysis, Elsevier, vol. 90(C), pages 100-113.
    3. George Tzavelas, 2019. "A characterization of the Pareto distribution based on the Fisher information for censored data under non-regularity conditions," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(4), pages 429-440, May.
    4. Ya. Nikitin, 2010. "Large deviations of U-empirical Kolmogorov–Smirnov tests and their efficiency," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(5), pages 649-668.
    5. Yakov Y. Nikitin & Irina Peaucelle, 2004. "Efficiency and local optimality of nonparametric tests based on U- and V-statistics," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(2), pages 185-200.
    6. Brazauskas, Vytaras & Serfling, Robert, 2003. "Favorable Estimators for Fitting Pareto Models: A Study Using Goodness-of-fit Measures with Actual Data," ASTIN Bulletin, Cambridge University Press, vol. 33(2), pages 365-381, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. L. Ndwandwe & J. S. Allison & L. Santana & I. J. H. Visagie, 2023. "Testing for the Pareto type I distribution: a comparative study," METRON, Springer;Sapienza Università di Roma, vol. 81(2), pages 215-256, August.
    2. Meintanis, S.G. & Milošević, B. & Jiménez–Gamero, M.D., 2024. "Goodness–of–fit tests based on the min–characteristic function," Computational Statistics & Data Analysis, Elsevier, vol. 197(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jovanović, Milan & Milošević, Bojana & Nikitin, Ya. Yu. & Obradović, Marko & Volkova, K. Yu., 2015. "Tests of exponentiality based on Arnold–Villasenor characterization and their efficiencies," Computational Statistics & Data Analysis, Elsevier, vol. 90(C), pages 100-113.
    2. Bojana Milošević & Marko Obradović, 2016. "New class of exponentiality tests based on U-empirical Laplace transform," Statistical Papers, Springer, vol. 57(4), pages 977-990, December.
    3. Bojana Milošević, 2016. "Asymptotic efficiency of new exponentiality tests based on a characterization," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(2), pages 221-236, February.
    4. Bojana Milošević & Marko Obradović, 2016. "Two-dimensional Kolmogorov-type goodness-of-fit tests based on characterisations and their asymptotic efficiencies," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(2), pages 413-427, June.
    5. Milošević, B. & Obradović, M., 2016. "Characterization based symmetry tests and their asymptotic efficiencies," Statistics & Probability Letters, Elsevier, vol. 119(C), pages 155-162.
    6. Ya. Yu. Nikitin, 2018. "Local exact Bahadur efficiencies of two scale-free tests of normality based on a recent characterization," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(6), pages 609-618, August.
    7. Milan Stehlík & Rastislav Potocký & Helmut Waldl & Zdeněk Fabián, 2010. "On the favorable estimation for fitting heavy tailed data," Computational Statistics, Springer, vol. 25(3), pages 485-503, September.
    8. L. Ndwandwe & J. S. Allison & L. Santana & I. J. H. Visagie, 2023. "Testing for the Pareto type I distribution: a comparative study," METRON, Springer;Sapienza Università di Roma, vol. 81(2), pages 215-256, August.
    9. Sarra Ghaddab & Manel Kacem & Christian Peretti & Lotfi Belkacem, 2023. "Extreme severity modeling using a GLM-GPD combination: application to an excess of loss reinsurance treaty," Empirical Economics, Springer, vol. 65(3), pages 1105-1127, September.
    10. Withers, Christopher S. & Nadarajah, Saralees, 2013. "Bayesian efficiency," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1203-1212.
    11. Rastislav Potocký & Helmut Waldl & Milan Stehlík, 2014. "On Sums of Claims and their Applications in Analysis of Pension Funds and Insurance Products," Prague Economic Papers, Prague University of Economics and Business, vol. 2014(3), pages 349-370.
    12. Mohamed E. Ghitany & Emilio Gómez-Déniz & Saralees Nadarajah, 2018. "A New Generalization of the Pareto Distribution and Its Application to Insurance Data," JRFM, MDPI, vol. 11(1), pages 1-14, February.
    13. Simos Meintanis & Bojana Milošević & Marko Obradović, 2023. "Bahadur efficiency for certain goodness-of-fit tests based on the empirical characteristic function," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(7), pages 723-751, October.
    14. Deepesh Bhati & Enrique Calderín-Ojeda & Mareeswaran Meenakshi, 2019. "A New Heavy Tailed Class of Distributions Which Includes the Pareto," Risks, MDPI, vol. 7(4), pages 1-17, September.
    15. Fung, Tsz Chai, 2022. "Maximum weighted likelihood estimator for robust heavy-tail modelling of finite mixture models," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 180-198.
    16. J. S. Allison & L. Santana & N. Smit & I. J. H. Visagie, 2017. "An ‘apples to apples’ comparison of various tests for exponentiality," Computational Statistics, Springer, vol. 32(4), pages 1241-1283, December.
    17. Rashad A. R. Bantan & Farrukh Jamal & Christophe Chesneau & Mohammed Elgarhy, 2020. "On a New Result on the Ratio Exponentiated General Family of Distributions with Applications," Mathematics, MDPI, vol. 8(4), pages 1-20, April.
    18. Nadezhda Gribkova & Ričardas Zitikis, 2019. "Weighted allocations, their concomitant-based estimators, and asymptotics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(4), pages 811-835, August.
    19. Yanev, George P. & Chakraborty, Santanu, 2016. "A characterization of exponential distribution and the Sukhatme–Rényi decomposition of exponential maxima," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 94-102.
    20. Su, Jianxi & Furman, Edward, 2017. "Multiple risk factor dependence structures: Distributional properties," Insurance: Mathematics and Economics, Elsevier, vol. 76(C), pages 56-68.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:37:y:2022:i:1:d:10.1007_s00180-021-01126-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.