IDEAS home Printed from https://ideas.repec.org/a/mgs/ijmsba/v8y2022i4p7-16.html
   My bibliography  Save this article

Visual Business Analytics: Using the Example of a Call Center

Author

Listed:
  • Pascal-Philipp Noellenburg

    (FOM University of Applied Science, Essen, Germany)

  • Arthur Dill

    (FOM University of Applied Science, Essen, Germany)

Abstract

In this article we will examine an approach to the analysis of semi-structured log data using the example of a call center as a subsection of a central corporate service center. In such data all events of a caller passing through the routing are stored. Consequently, it is possible to trace more precisely what the customer experiences during his call. However, this information is only available in semi-structured form. A little-known approach in Anglo-Saxon literature, the Visual Business Analytics (VBA), represents a holistic concept for achieving added value from semi-structured data. In the VBA, data is initially transformed and structured and then prepared for analysis purposes. The goal is to derive recommendations for supporting management decisions in a call center. In the further course, the development of the approaches of information representation is examined first, then the VBA is presented and applied to the log protocols in a call center. Finally, other call center applications of VBA are considered, and an outlook is given on other industries in which the use of VBA offers advantages.

Suggested Citation

  • Pascal-Philipp Noellenburg & Arthur Dill, 2022. "Visual Business Analytics: Using the Example of a Call Center," International Journal of Management Science and Business Administration, Inovatus Services Ltd., vol. 8(4), pages 7-16, May.
  • Handle: RePEc:mgs:ijmsba:v:8:y:2022:i:4:p:7-16
    DOI: 10.18775/ijmsba.1849-5664-5419.2014.84.1001
    as

    Download full text from publisher

    File URL: https://researchleap.com/wp-content/uploads/2022/05/01_Visual-Business-Analytics-Using-the-Example-of-a-Call-Center-1.pdf
    Download Restriction: no

    File URL: https://researchleap.com/visual-business-analytics-using-the-example-of-a-call-center/
    Download Restriction: no

    File URL: https://libkey.io/10.18775/ijmsba.1849-5664-5419.2014.84.1001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Andrei Vasilateanu & Razvan Ene, 2018. "Call-Center Virtual Assistant Using Natural Language Processing and Speech Recognition," Journal of ICT, Design, Engineering and Technological Science, Juhriyansyah Dalle, vol. 2(2), pages 40-46.
    2. Lawrence Brown & Noah Gans & Avishai Mandelbaum & Anat Sakov & Haipeng Shen & Sergey Zeltyn & Linda Zhao, 2005. "Statistical Analysis of a Telephone Call Center: A Queueing-Science Perspective," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 36-50, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. De Munck, Thomas & Chevalier, Philippe & Tancrez, Jean-Sébastien, 2023. "Managing priorities on on-demand service platforms with waiting time differentiation," International Journal of Production Economics, Elsevier, vol. 266(C).
    2. Avishai Mandelbaum & Petar Momčilović, 2017. "Personalized queues: the customer view, via a fluid model of serving least-patient first," Queueing Systems: Theory and Applications, Springer, vol. 87(1), pages 23-53, October.
    3. Barrow, Devon & Kourentzes, Nikolaos, 2018. "The impact of special days in call arrivals forecasting: A neural network approach to modelling special days," European Journal of Operational Research, Elsevier, vol. 264(3), pages 967-977.
    4. Rouba Ibrahim & Pierre L'Ecuyer, 2013. "Forecasting Call Center Arrivals: Fixed-Effects, Mixed-Effects, and Bivariate Models," Manufacturing & Service Operations Management, INFORMS, vol. 15(1), pages 72-85, May.
    5. Nabil Channouf & Pierre L’Ecuyer & Armann Ingolfsson & Athanassios Avramidis, 2007. "The application of forecasting techniques to modeling emergency medical system calls in Calgary, Alberta," Health Care Management Science, Springer, vol. 10(1), pages 25-45, February.
    6. Achal Bassamboo & J. Michael Harrison & Assaf Zeevi, 2006. "Design and Control of a Large Call Center: Asymptotic Analysis of an LP-Based Method," Operations Research, INFORMS, vol. 54(3), pages 419-435, June.
    7. Ward Whitt, 2007. "What you should know about queueing models to set staffing requirements in service systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(5), pages 476-484, August.
    8. Rouba Ibrahim & Mor Armony & Achal Bassamboo, 2017. "Does the Past Predict the Future? The Case of Delay Announcements in Service Systems," Management Science, INFORMS, vol. 63(6), pages 1762-1780, June.
    9. Rouba Ibrahim & Ward Whitt, 2011. "Wait-Time Predictors for Customer Service Systems with Time-Varying Demand and Capacity," Operations Research, INFORMS, vol. 59(5), pages 1106-1118, October.
    10. Alex Roubos & Ger Koole & Raik Stolletz, 2012. "Service-Level Variability of Inbound Call Centers," Manufacturing & Service Operations Management, INFORMS, vol. 14(3), pages 402-413, July.
    11. Qiuping Yu & Gad Allon & Achal Bassamboo & Seyed Iravani, 2018. "Managing Customer Expectations and Priorities in Service Systems," Management Science, INFORMS, vol. 64(8), pages 3942-3970, August.
    12. Bolandifar, Ehsan & DeHoratius, Nicole & Olsen, Tava, 2023. "Modeling abandonment behavior among patients," European Journal of Operational Research, Elsevier, vol. 306(1), pages 243-254.
    13. Josh Reed & Yair Shaki, 2015. "A Fair Policy for the G / GI / N Queue with Multiple Server Pools," Mathematics of Operations Research, INFORMS, vol. 40(3), pages 558-595, March.
    14. Barrow, Devon K., 2016. "Forecasting intraday call arrivals using the seasonal moving average method," Journal of Business Research, Elsevier, vol. 69(12), pages 6088-6096.
    15. Kinshuk Jerath & Anuj Kumar & Serguei Netessine, 2015. "An Information Stock Model of Customer Behavior in Multichannel Customer Support Services," Manufacturing & Service Operations Management, INFORMS, vol. 17(3), pages 368-383, July.
    16. Delasay, Mohammad & Ingolfsson, Armann & Kolfal, Bora & Schultz, Kenneth, 2019. "Load effect on service times," European Journal of Operational Research, Elsevier, vol. 279(3), pages 673-686.
    17. Achal Bassamboo & Assaf Zeevi, 2009. "On a Data-Driven Method for Staffing Large Call Centers," Operations Research, INFORMS, vol. 57(3), pages 714-726, June.
    18. James W. Taylor, 2012. "Density Forecasting of Intraday Call Center Arrivals Using Models Based on Exponential Smoothing," Management Science, INFORMS, vol. 58(3), pages 534-549, March.
    19. Dietz, Dennis C., 2011. "Practical scheduling for call center operations," Omega, Elsevier, vol. 39(5), pages 550-557, October.
    20. René Bekker & Dennis Moeke & Bas Schmidt, 2019. "Keeping pace with the ebbs and flows in daily nursing home operations," Health Care Management Science, Springer, vol. 22(2), pages 350-363, June.

    More about this item

    Keywords

    Visual Business Analytics; Management decisions; Call center; Big data;
    All these keywords.

    JEL classification:

    • M00 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - General - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mgs:ijmsba:v:8:y:2022:i:4:p:7-16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bojan Obrenovic (email available below). General contact details of provider: https://researchleap.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.