IDEAS home Printed from https://ideas.repec.org/a/mfj/journl/v22y2018i3-4p173-210.html
   My bibliography  Save this article

The Risk-Asymmetry Index as a new Measure of Risk

Author

Listed:
  • Elyas Elyasiani

    (Temple University, USA)

  • Luca Gambarelli

    (University of Modena and Reggio Emilia, Italy)

  • Silvia Muzzioli

    (University of Modena and Reggio Emilia, Italy)

Abstract

The aim of this paper is to propose a simple and unique measure of risk that subsumes the conflicting information contained in volatility and skewness indices and overcomes the limitations of these indices in accurately measuring future fear or greed in the market. To this end, the concept of upside and downside corridor implied volatility, which accounts for the asymmetry in the risk-neutral distribution, is exploited. The risk-asymmetry index is intended to capture the investors’ pricing asymmetry towards upside gains and downside losses. The results show that the proposed risk-asymmetry index can play a crucial role in predicting future returns, at various forecast horizons, since it subsumes the information embedded in both the volatility and skewness indices. Furthermore, the risk-asymmetry index is the only index that, at very high values, possesses the ability to clearly highlight a risky situation for the aggregate stock market.

Suggested Citation

  • Elyas Elyasiani & Luca Gambarelli & Silvia Muzzioli, 2018. "The Risk-Asymmetry Index as a new Measure of Risk," Multinational Finance Journal, Multinational Finance Journal, vol. 22(3-4), pages 173-210, September.
  • Handle: RePEc:mfj:journl:v:22:y:2018:i:3-4:p:173-210
    as

    Download full text from publisher

    File URL: http://www.mfsociety.org/modules/modDashboard/uploadFiles/journals/MJ~0~p1djh5cb7c1d0bpag1qck1ki61dkq4.pdf
    Download Restriction: no

    File URL: http://www.mfsociety.org/modules/modDashboard/uploadFiles/journals/googleScholar/1638.html
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mark Britten‐Jones & Anthony Neuberger, 2000. "Option Prices, Implied Price Processes, and Stochastic Volatility," Journal of Finance, American Finance Association, vol. 55(2), pages 839-866, April.
    2. Jennifer Conrad & Robert F. Dittmar & Eric Ghysels, 2013. "Ex Ante Skewness and Expected Stock Returns," Journal of Finance, American Finance Association, vol. 68(1), pages 85-124, February.
    3. Yan, Shu, 2011. "Jump risk, stock returns, and slope of implied volatility smile," Journal of Financial Economics, Elsevier, vol. 99(1), pages 216-233, January.
    4. Jun Pan & Allen M. Poteshman, 2006. "The Information in Option Volume for Future Stock Prices," The Review of Financial Studies, Society for Financial Studies, vol. 19(3), pages 871-908.
    5. Torben G. Andersen & Oleg Bondarenko, 2007. "Construction and Interpretation of Model-Free Implied Volatility," CREATES Research Papers 2007-24, Department of Economics and Business Economics, Aarhus University.
    6. Chang, Bo Young & Christoffersen, Peter & Jacobs, Kris, 2013. "Market skewness risk and the cross section of stock returns," Journal of Financial Economics, Elsevier, vol. 107(1), pages 46-68.
    7. Silvia Muzzioli, 2013. "The Optimal Corridor for Implied Volatility: from Calm to Turmoil Periods," Department of Economics (DEMB) 0029, University of Modena and Reggio Emilia, Department of Economics "Marco Biagi".
    8. Whitney K. Newey & Kenneth D. West, 1994. "Automatic Lag Selection in Covariance Matrix Estimation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 61(4), pages 631-653.
    9. Silvia Muzzioli, 2013. "The Information Content of Option-Based Forecasts of Volatility: Evidence from the Italian Stock Market," Quarterly Journal of Finance (QJF), World Scientific Publishing Co. Pte. Ltd., vol. 3(01), pages 1-46.
    10. Hiroshi Sasaki, 2016. "The skewness risk premium in equilibrium and stock return predictability," Annals of Finance, Springer, vol. 12(1), pages 95-133, February.
    11. Gurdip Bakshi & Nikunj Kapadia & Dilip Madan, 2003. "Stock Return Characteristics, Skew Laws, and the Differential Pricing of Individual Equity Options," The Review of Financial Studies, Society for Financial Studies, vol. 16(1), pages 101-143.
    12. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    13. Lin, Tse-Chun & Lu, Xiaolong, 2015. "Why do options prices predict stock returns? Evidence from analyst tipping," Journal of Banking & Finance, Elsevier, vol. 52(C), pages 17-28.
    14. Bali, Turan G. & Murray, Scott, 2013. "Does Risk-Neutral Skewness Predict the Cross-Section of Equity Option Portfolio Returns?," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 48(4), pages 1145-1171, August.
    15. G. Rubbaniy & Robel Asmerom & Syed Kumail Abbas Rizvi & Bushra Naqvi, 2014. "Do fear indices help predict stock returns?," Quantitative Finance, Taylor & Francis Journals, vol. 14(5), pages 831-847, May.
    16. Carr, Peter & Madan, Dilip B., 2005. "A note on sufficient conditions for no arbitrage," Finance Research Letters, Elsevier, vol. 2(3), pages 125-130, September.
    17. Xing, Yuhang & Zhang, Xiaoyan & Zhao, Rui, 2010. "What Does the Individual Option Volatility Smirk Tell Us About Future Equity Returns?," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 45(3), pages 641-662, June.
    18. Muzzioli, Silvia, 2015. "The optimal corridor for implied volatility: From periods of calm to turmoil," Journal of Economics and Business, Elsevier, vol. 81(C), pages 77-94.
    19. Roman Kozhan & Anthony Neuberger & Paul Schneider, 2013. "The Skew Risk Premium in the Equity Index Market," The Review of Financial Studies, Society for Financial Studies, vol. 26(9), pages 2174-2203.
    20. Cremers, Martijn & Weinbaum, David, 2010. "Deviations from Put-Call Parity and Stock Return Predictability," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 45(2), pages 335-367, April.
    21. repec:bla:jfinan:v:53:y:1998:i:2:p:499-547 is not listed on IDEAS
    22. Przemysław S. Stilger & Alexandros Kostakis & Ser-Huang Poon, 2017. "What Does Risk-Neutral Skewness Tell Us About Future Stock Returns?," Management Science, INFORMS, vol. 63(6), pages 1814-1834, June.
    23. Silvia Muzzioli, 2013. "The Forecasting Performance of Corridor Implied Volatility in the Italian Market," Computational Economics, Springer;Society for Computational Economics, vol. 41(3), pages 359-386, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luca Gambarelli & Silvia Muzzioli, 2019. "Risk-asymmetry indices in Europe," Department of Economics 0157, University of Modena and Reggio E., Faculty of Economics "Marco Biagi".
    2. Giovanni Campisi & Silvia Muzzioli, 2020. "Investor sentiment and trading behavior," Department of Economics 0163, University of Modena and Reggio E., Faculty of Economics "Marco Biagi".
    3. Giovanni Campisi & Silvia Muzzioli, 2021. "Designing volatility indices for Austria, Finland and Spain," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 35(3), pages 369-455, September.
    4. Panayiotis Theodossiou & Dimitris Tsouknidis & Christos Savva, 2020. "Freight rates in downside and upside markets: pricing of own and spillover risks from other shipping segments," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 1097-1119, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luca Gambarelli & Silvia Muzzioli, 2019. "Risk-asymmetry indices in Europe," Department of Economics 0157, University of Modena and Reggio E., Faculty of Economics "Marco Biagi".
    2. Elyas Elyasani & Luca Gambarelli & Silvia Muzzioli, 2016. "The risk asymmetry index," Centro Studi di Banca e Finanza (CEFIN) (Center for Studies in Banking and Finance) 0061, Universita di Modena e Reggio Emilia, Dipartimento di Economia "Marco Biagi".
    3. Elyas Elyasani & Luca Gambarelli & Silvia Muzzioli, 2016. "The risk asymmetry index," Centro Studi di Banca e Finanza (CEFIN) (Center for Studies in Banking and Finance) 16212, Universita di Modena e Reggio Emilia, Dipartimento di Economia "Marco Biagi".
    4. Elyas Elyasiani & Luca Gambarelli & Silvia Muzzioli, 2018. "The properties of a skewness index and its relation with volatility and returns," Department of Economics 0133, University of Modena and Reggio E., Faculty of Economics "Marco Biagi".
    5. Elyas Elyasiani & Luca Gambarelli & Silvia Muzzioli, 2015. "Towards a skewness index for the Italian stock market," Department of Economics 0064, University of Modena and Reggio E., Faculty of Economics "Marco Biagi".
    6. Elyas Elyasiani & Luca Gambarelli & Silvia Muzzioli, 2016. "Fear or greed? What does a skewness index measure?," Department of Economics 0102, University of Modena and Reggio E., Faculty of Economics "Marco Biagi".
    7. Elyas Elyasiani & Luca Gambarelli & Silvia Muzzioli, 2018. "The use of option prices in order to evaluate the skewness risk premium," Department of Economics 0132, University of Modena and Reggio E., Faculty of Economics "Marco Biagi".
    8. Elyasiani, Elyas & Gambarelli, Luca & Muzzioli, Silvia, 2020. "Moment risk premia and the cross-section of stock returns in the European stock market," Journal of Banking & Finance, Elsevier, vol. 111(C).
    9. Chin‐Ho Chen, 2021. "Investor sentiment, misreaction, and the skewness‐return relationship," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(9), pages 1427-1455, September.
    10. Elyas Elyasiani & Silvia Muzzioli & Alessio Ruggieri, 2016. "Forecasting and pricing powers of option-implied tree models: Tranquil and volatile market conditions," Department of Economics 0099, University of Modena and Reggio E., Faculty of Economics "Marco Biagi".
    11. Gkionis, Konstantinos & Kostakis, Alexandros & Skiadopoulos, George & Stilger, Przemyslaw S., 2021. "Positive stock information in out-of-the-money option prices," Journal of Banking & Finance, Elsevier, vol. 128(C).
    12. Ruan, Xinfeng & Zhang, Jin E., 2018. "Risk-neutral moments in the crude oil market," Energy Economics, Elsevier, vol. 72(C), pages 583-600.
    13. Jiang, Zhengyun & Zhou, Xin, 2024. "Trading activity, risk aversion, and risk neutral skewness: Evidence from SSE 50ETF option," International Review of Economics & Finance, Elsevier, vol. 91(C), pages 378-399.
    14. Finta, Marinela Adriana & Ornelas, José Renato Haas, 2022. "Commodity return predictability: Evidence from implied variance, skewness, and their risk premia☆☆," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 79(C).
    15. Paul Schneider & Christian Wagner & Josef Zechner, 2020. "Low‐Risk Anomalies?," Journal of Finance, American Finance Association, vol. 75(5), pages 2673-2718, October.
    16. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    17. Marinela Adriana Finta & José Renato Haas Ornelas, 2018. "Commodity Return Predictability: evidence from implied variance, skewness and their risk premia and their risk premia," Working Papers Series 479, Central Bank of Brazil, Research Department.
    18. Andreou, Panayiotis C. & Kagkadis, Anastasios & Philip, Dennis & Tuneshev, Ruslan, 2018. "Differences in options investors’ expectations and the cross-section of stock returns," Journal of Banking & Finance, Elsevier, vol. 94(C), pages 315-336.
    19. Chen, Zhuo & Lu, Andrea, 2017. "Slow diffusion of information and price momentum in stocks: Evidence from options markets," Journal of Banking & Finance, Elsevier, vol. 75(C), pages 98-108.
    20. Hollstein, Fabian & Nguyen, Duc Binh Benno & Prokopczuk, Marcel, 2019. "Asset prices and “the devil(s) you know”," Journal of Banking & Finance, Elsevier, vol. 105(C), pages 20-35.

    More about this item

    Keywords

    risk-asymmetry; corridor implied volatility; risk-neutral moments; risk measures; return predictability;
    All these keywords.

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mfj:journl:v:22:y:2018:i:3-4:p:173-210. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Theodossiou Panayiotis (email available below). General contact details of provider: https://edirc.repec.org/data/mfsssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.