IDEAS home Printed from https://ideas.repec.org/p/mod/dembwp/0029.html
   My bibliography  Save this paper

The Optimal Corridor for Implied Volatility: from Calm to Turmoil Periods

Author

Listed:
  • Silvia Muzzioli

Abstract

Corridor implied volatility is obtained from model-free implied volatility by truncating the integration domain between two barriers. Empirical evidence on volatility forecasting, in various markets, points to the utility of trimming the risk-neutral distribution of the underlying stock price, in order to obtain unbiased measures of future realised volatility (see e.g. [9], [3]). The aim of the paper is to investigate, both in a statistical and in an economic setting, the optimal corridor of strike prices to use for volatility forecasting in the Italian market, by analysing a data set which covers the years 2005-2010 and span both a relatively tranquil and a turmoil period

Suggested Citation

  • Silvia Muzzioli, 2013. "The Optimal Corridor for Implied Volatility: from Calm to Turmoil Periods," Department of Economics (DEMB) 0029, University of Modena and Reggio Emilia, Department of Economics "Marco Biagi".
  • Handle: RePEc:mod:dembwp:0029
    as

    Download full text from publisher

    File URL: http://155.185.68.2/wpdemb/0029.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mark Britten‐Jones & Anthony Neuberger, 2000. "Option Prices, Implied Price Processes, and Stochastic Volatility," Journal of Finance, American Finance Association, vol. 55(2), pages 839-866, April.
    2. Moriggia, V. & Muzzioli, S. & Torricelli, C., 2009. "On the no-arbitrage condition in option implied trees," European Journal of Operational Research, Elsevier, vol. 193(1), pages 212-221, February.
    3. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    4. Jozef Barunik & Michaela Barunikova, 2012. "Revisiting the fractional cointegrating dynamics of implied-realized volatility relation with wavelet band spectrum regression," Papers 1208.4831, arXiv.org, revised Feb 2013.
    5. Torben G. Andersen & Oleg Bondarenko, 2007. "Construction and Interpretation of Model-Free Implied Volatility," CREATES Research Papers 2007-24, Department of Economics and Business Economics, Aarhus University.
    6. S. Muzzioli, 2010. "Option-based forecasts of volatility: an empirical study in the DAX-index options market," The European Journal of Finance, Taylor & Francis Journals, vol. 16(6), pages 561-586.
    7. Joshua D. Coval & Tyler Shumway, 2001. "Expected Option Returns," Journal of Finance, American Finance Association, vol. 56(3), pages 983-1009, June.
    8. Ser-Huang Poon & Clive W.J. Granger, 2003. "Forecasting Volatility in Financial Markets: A Review," Journal of Economic Literature, American Economic Association, vol. 41(2), pages 478-539, June.
    9. Patton, Andrew J., 2011. "Volatility forecast comparison using imperfect volatility proxies," Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
    10. Silvia Muzzioli, 2013. "The Forecasting Performance of Corridor Implied Volatility in the Italian Market," Computational Economics, Springer;Society for Computational Economics, vol. 41(3), pages 359-386, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elyas Elyasiani & Luca Gambarelli & Silvia Muzzioli, 2018. "The Risk-Asymmetry Index as a new Measure of Risk," Multinational Finance Journal, Multinational Finance Journal, vol. 22(3-4), pages 173-210, September.
    2. Elyas Elyasani & Luca Gambarelli & Silvia Muzzioli, 2016. "The risk asymmetry index," Centro Studi di Banca e Finanza (CEFIN) (Center for Studies in Banking and Finance) 0061, Universita di Modena e Reggio Emilia, Dipartimento di Economia "Marco Biagi".
    3. Elyas Elyasiani & Luca Gambarelli & Silvia Muzzioli, 2015. "Towards a skewness index for the Italian stock market," Department of Economics 0064, University of Modena and Reggio E., Faculty of Economics "Marco Biagi".
    4. Elyas Elyasani & Luca Gambarelli & Silvia Muzzioli, 2016. "The risk asymmetry index," Centro Studi di Banca e Finanza (CEFIN) (Center for Studies in Banking and Finance) 16212, Universita di Modena e Reggio Emilia, Dipartimento di Economia "Marco Biagi".
    5. Elyas Elyasiani & Luca Gambarelli & Silvia Muzzioli, 2018. "The use of option prices in order to evaluate the skewness risk premium," Department of Economics 0132, University of Modena and Reggio E., Faculty of Economics "Marco Biagi".
    6. Luca Gambarelli & Silvia Muzzioli, 2019. "Risk-asymmetry indices in Europe," Department of Economics 0157, University of Modena and Reggio E., Faculty of Economics "Marco Biagi".

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muzzioli, Silvia, 2015. "The optimal corridor for implied volatility: From periods of calm to turmoil," Journal of Economics and Business, Elsevier, vol. 81(C), pages 77-94.
    2. Silvia Muzzioli, 2013. "The Information Content of Option-Based Forecasts of Volatility: Evidence from the Italian Stock Market," Quarterly Journal of Finance (QJF), World Scientific Publishing Co. Pte. Ltd., vol. 3(01), pages 1-46.
    3. Silvia Muzzioli, 2011. "Corridor implied volatility and the variance risk premium in the Italian market," Centro Studi di Banca e Finanza (CEFIN) (Center for Studies in Banking and Finance) 0030, Universita di Modena e Reggio Emilia, Dipartimento di Economia "Marco Biagi".
    4. Silvia Muzzioli, 2013. "The Forecasting Performance of Corridor Implied Volatility in the Italian Market," Computational Economics, Springer;Society for Computational Economics, vol. 41(3), pages 359-386, March.
    5. Silvia Muzzioli & Luca Gambarelli & Bernard De Baets, 2018. "Indices for Financial Market Volatility Obtained Through Fuzzy Regression," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 17(06), pages 1659-1691, November.
    6. Silvia Muzzioli, 2010. "Towards a volatility index for the Italian stock market," Centro Studi di Banca e Finanza (CEFIN) (Center for Studies in Banking and Finance) 10091, Universita di Modena e Reggio Emilia, Dipartimento di Economia "Marco Biagi".
    7. Silvia Muzzioli, 2011. "Corridor implied volatility and the variance risk premium in the Italian market," Centro Studi di Banca e Finanza (CEFIN) (Center for Studies in Banking and Finance) 11112, Universita di Modena e Reggio Emilia, Dipartimento di Economia "Marco Biagi".
    8. Elyas Elyasiani & Silvia Muzzioli & Alessio Ruggieri, 2016. "Forecasting and pricing powers of option-implied tree models: Tranquil and volatile market conditions," Department of Economics 0099, University of Modena and Reggio E., Faculty of Economics "Marco Biagi".
    9. Tsiaras, Leonidas, 2009. "The Forecast Performance of Competing Implied Volatility Measures: The Case of Individual Stocks," Finance Research Group Working Papers F-2009-02, University of Aarhus, Aarhus School of Business, Department of Business Studies.
    10. Imlak Shaikh & Puja Padhi, 2014. "The forecasting performance of implied volatility index: evidence from India VIX," Economic Change and Restructuring, Springer, vol. 47(4), pages 251-274, November.
    11. Shan Lu, 2019. "Testing the Predictive Ability of Corridor Implied Volatility Under GARCH Models," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 26(2), pages 129-168, June.
    12. Bekaert, Geert & Hoerova, Marie, 2014. "The VIX, the variance premium and stock market volatility," Journal of Econometrics, Elsevier, vol. 183(2), pages 181-192.
    13. Xingzhi Yao & Marwan Izzeldin, 2018. "Forecasting using alternative measures of model‐free option‐implied volatility," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(2), pages 199-218, February.
    14. Elyas Elyasiani & Luca Gambarelli & Silvia Muzzioli, 2015. "Towards a skewness index for the Italian stock market," Department of Economics 0064, University of Modena and Reggio E., Faculty of Economics "Marco Biagi".
    15. Florian Ielpo & Benoît Sévi, 2014. "Forecasting the density of oil futures," Working Papers 2014-601, Department of Research, Ipag Business School.
    16. Silvia Muzzioli & Luca Gambarelli & Bernard Baets, 2020. "Option implied moments obtained through fuzzy regression," Fuzzy Optimization and Decision Making, Springer, vol. 19(2), pages 211-238, June.
    17. Heejoon Han & Myung D. Park, 2013. "Comparison of Realized Measure and Implied Volatility in Forecasting Volatility," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(6), pages 522-533, September.
    18. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    19. Wilms, Ines & Rombouts, Jeroen & Croux, Christophe, 2021. "Multivariate volatility forecasts for stock market indices," International Journal of Forecasting, Elsevier, vol. 37(2), pages 484-499.
    20. Salisu, Afees A. & Demirer, Riza & Gupta, Rangan, 2022. "Financial turbulence, systemic risk and the predictability of stock market volatility," Global Finance Journal, Elsevier, vol. 52(C).

    More about this item

    Keywords

    corridor implied volatility; model-free implied volatility; volatility forecasting; financial turmoil;
    All these keywords.

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mod:dembwp:0029. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sara Colombini (email available below). General contact details of provider: https://edirc.repec.org/data/demodit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.