IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v41y2013i3p359-386.html
   My bibliography  Save this article

The Forecasting Performance of Corridor Implied Volatility in the Italian Market

Author

Listed:
  • Silvia Muzzioli

Abstract

Corridor implied volatility introduced in Carr and Madan (Volatility: new estimation techniques for pricing derivatives, 1998 ) and recently implemented in Andersen and Bondarenko (Volatility as an asset class, 2007 ) is obtained from model-free implied volatility by truncating the integration domain between two barriers. Corridor implied volatility is implicitly linked with the concept that the tails of the risk-neutral distribution are estimated with less precision than central values, due to the lack of liquid options for very high and very low strikes. However, there is no golden choice for the barrier levels, which are likely to change depending on the underlying asset risk neutral distribution. The latter feature renders its forecasting performance mainly an empirical question. The aim of the paper is to investigate the forecasting performance of corridor implied volatility by choosing different corridors with symmetric and asymmetric cuts, and compare the results with the preliminary findings in Muzzioli (CEFIN working paper no 23, 2010b ). Moreover, we shed light on the information content of different parts of the risk neutral distribution of the stock price, by using a model-independent approach based on corridor measures. To this end we compute both realized and model-free variance measures accounting for both falls and increases in the underlying asset price. The forecasting performance of volatility measures is evaluated both in a statistical and an economic setting. The economic significance is assessed by employing trading strategies based on delta-neutral straddles. The comparison is pursued by using intra-day synchronous prices between the options and the underlying asset. Copyright Springer Science+Business Media New York 2013

Suggested Citation

  • Silvia Muzzioli, 2013. "The Forecasting Performance of Corridor Implied Volatility in the Italian Market," Computational Economics, Springer;Society for Computational Economics, vol. 41(3), pages 359-386, March.
  • Handle: RePEc:kap:compec:v:41:y:2013:i:3:p:359-386
    DOI: 10.1007/s10614-012-9343-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10614-012-9343-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10614-012-9343-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mark Britten‐Jones & Anthony Neuberger, 2000. "Option Prices, Implied Price Processes, and Stochastic Volatility," Journal of Finance, American Finance Association, vol. 55(2), pages 839-866, April.
    2. Tsiaras, Leonidas, 2009. "The Forecast Performance of Competing Implied Volatility Measures: The Case of Individual Stocks," Finance Research Group Working Papers F-2009-02, University of Aarhus, Aarhus School of Business, Department of Business Studies.
    3. Andersen T. G & Bollerslev T. & Diebold F. X & Labys P., 2001. "The Distribution of Realized Exchange Rate Volatility," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 42-55, March.
    4. Tim Bollerslev & George Tauchen & Hao Zhou, 2009. "Expected Stock Returns and Variance Risk Premia," The Review of Financial Studies, Society for Financial Studies, vol. 22(11), pages 4463-4492, November.
    5. Moriggia, V. & Muzzioli, S. & Torricelli, C., 2009. "On the no-arbitrage condition in option implied trees," European Journal of Operational Research, Elsevier, vol. 193(1), pages 212-221, February.
    6. Hansen, Peter Reinhard & Lunde, Asger, 2006. "Consistent ranking of volatility models," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 97-121.
    7. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    8. Andrew Ang & Joseph Chen & Yuhang Xing, 2006. "Downside Risk," The Review of Financial Studies, Society for Financial Studies, vol. 19(4), pages 1191-1239.
      • Andrew Ang & Joseph Chen & Yuhang Xing, 2005. "Downside risk," Proceedings, Board of Governors of the Federal Reserve System (U.S.).
    9. Carr, Peter & Madan, Dilip B., 2005. "A note on sufficient conditions for no arbitrage," Finance Research Letters, Elsevier, vol. 2(3), pages 125-130, September.
    10. Campa, Jose M. & Chang, P. H. Kevin & Reider, Robert L., 1998. "Implied exchange rate distributions: evidence from OTC option markets1," Journal of International Money and Finance, Elsevier, vol. 17(1), pages 117-160, February.
    11. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    12. Torben G. Andersen & Oleg Bondarenko, 2007. "Construction and Interpretation of Model-Free Implied Volatility," CREATES Research Papers 2007-24, Department of Economics and Business Economics, Aarhus University.
    13. S. Muzzioli, 2010. "Option-based forecasts of volatility: an empirical study in the DAX-index options market," The European Journal of Finance, Taylor & Francis Journals, vol. 16(6), pages 561-586.
    14. Leonidas S. Rompolis & Elias Tzavalis, 2017. "Retrieving risk neutral moments and expected quadratic variation from option prices," Review of Quantitative Finance and Accounting, Springer, vol. 48(4), pages 955-1002, May.
    15. Ser-Huang Poon & Clive W.J. Granger, 2003. "Forecasting Volatility in Financial Markets: A Review," Journal of Economic Literature, American Economic Association, vol. 41(2), pages 478-539, June.
    16. George J. Jiang & Yisong S. Tian, 2005. "The Model-Free Implied Volatility and Its Information Content," The Review of Financial Studies, Society for Financial Studies, vol. 18(4), pages 1305-1342.
    17. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    18. Patton, Andrew J., 2011. "Volatility forecast comparison using imperfect volatility proxies," Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
    19. Peter Carr & Liuren Wu, 2009. "Variance Risk Premiums," The Review of Financial Studies, Society for Financial Studies, vol. 22(3), pages 1311-1341, March.
    20. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    21. repec:bla:jfinan:v:53:y:1998:i:2:p:499-547 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Silvia Muzzioli, 2011. "Corridor implied volatility and the variance risk premium in the Italian market," Centro Studi di Banca e Finanza (CEFIN) (Center for Studies in Banking and Finance) 11112, Universita di Modena e Reggio Emilia, Dipartimento di Economia "Marco Biagi".
    2. Silvia Muzzioli, 2011. "Corridor implied volatility and the variance risk premium in the Italian market," Centro Studi di Banca e Finanza (CEFIN) (Center for Studies in Banking and Finance) 0030, Universita di Modena e Reggio Emilia, Dipartimento di Economia "Marco Biagi".
    3. Silvia Muzzioli, 2010. "Towards a volatility index for the Italian stock market," Centro Studi di Banca e Finanza (CEFIN) (Center for Studies in Banking and Finance) 10091, Universita di Modena e Reggio Emilia, Dipartimento di Economia "Marco Biagi".
    4. Silvia Muzzioli, 2013. "The Information Content of Option-Based Forecasts of Volatility: Evidence from the Italian Stock Market," Quarterly Journal of Finance (QJF), World Scientific Publishing Co. Pte. Ltd., vol. 3(01), pages 1-46.
    5. Tsiaras, Leonidas, 2009. "The Forecast Performance of Competing Implied Volatility Measures: The Case of Individual Stocks," Finance Research Group Working Papers F-2009-02, University of Aarhus, Aarhus School of Business, Department of Business Studies.
    6. Muzzioli, Silvia, 2015. "The optimal corridor for implied volatility: From periods of calm to turmoil," Journal of Economics and Business, Elsevier, vol. 81(C), pages 77-94.
    7. Silvia Muzzioli & Luca Gambarelli & Bernard De Baets, 2018. "Indices for Financial Market Volatility Obtained Through Fuzzy Regression," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 17(06), pages 1659-1691, November.
    8. Oikonomou, Ioannis & Stancu, Andrei & Symeonidis, Lazaros & Wese Simen, Chardin, 2019. "The information content of short-term options," Journal of Financial Markets, Elsevier, vol. 46(C).
    9. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    10. Florian Ielpo & Benoît Sévi, 2014. "Forecasting the density of oil futures," Working Papers 2014-601, Department of Research, Ipag Business School.
    11. Silvia Muzzioli, 2013. "The Optimal Corridor for Implied Volatility: from Calm to Turmoil Periods," Department of Economics (DEMB) 0029, University of Modena and Reggio Emilia, Department of Economics "Marco Biagi".
    12. Xiao Xiao & Chen Zhou, 2017. "Entropy-based implied moments," DNB Working Papers 581, Netherlands Central Bank, Research Department.
    13. Sucarrat, Genaro, 2009. "Forecast Evaluation of Explanatory Models of Financial Variability," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 3, pages 1-33.
    14. Ozcan Ceylan, 2015. "Limited information-processing capacity and asymmetric stock correlations," Quantitative Finance, Taylor & Francis Journals, vol. 15(6), pages 1031-1039, June.
    15. Wilms, Ines & Rombouts, Jeroen & Croux, Christophe, 2021. "Multivariate volatility forecasts for stock market indices," International Journal of Forecasting, Elsevier, vol. 37(2), pages 484-499.
    16. Bekaert, Geert & Hoerova, Marie, 2014. "The VIX, the variance premium and stock market volatility," Journal of Econometrics, Elsevier, vol. 183(2), pages 181-192.
    17. Fabian Hollstein & Marcel Prokopczuk & Chardin Wese Simen, 2020. "The Conditional Capital Asset Pricing Model Revisited: Evidence from High-Frequency Betas," Management Science, INFORMS, vol. 66(6), pages 2474-2494, June.
    18. Cordis, Adriana S. & Kirby, Chris, 2014. "Discrete stochastic autoregressive volatility," Journal of Banking & Finance, Elsevier, vol. 43(C), pages 160-178.
    19. Birkelund, Ole Henrik & Haugom, Erik & Molnár, Peter & Opdal, Martin & Westgaard, Sjur, 2015. "A comparison of implied and realized volatility in the Nordic power forward market," Energy Economics, Elsevier, vol. 48(C), pages 288-294.
    20. Elyas Elyasiani & Silvia Muzzioli & Alessio Ruggieri, 2016. "Forecasting and pricing powers of option-implied tree models: Tranquil and volatile market conditions," Department of Economics 0099, University of Modena and Reggio E., Faculty of Economics "Marco Biagi".

    More about this item

    Keywords

    Corridor implied volatility; Model-free implied volatility; Variance swap; Corridor variance swap; G13; G14;
    All these keywords.

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:41:y:2013:i:3:p:359-386. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.