IDEAS home Printed from https://ideas.repec.org/a/lrc/larijb/v3y2013i12p37-47.html
   My bibliography  Save this article

Demand Chain Management Model: A Tool for Stakeholders’ Value Creation

Author

Listed:
  • Kwabena Sarpong Anning

    (Kwame Nkrumah University of Science and Technology and Africa Centre for Supply Chain Research)

  • Stephen Okyere

    (Purchasing and Supply Department, Kumasi Polytechnic)

  • Jonathan Annan

    (Department of Information Systems and Decision Sciences, School of Business, Kwame Nkrumah University of Science & Technology)

Abstract

The recent pressure on organisations to maximise shareholders value through demand chain management has brought about many arguments as there are different consensuses on what supply chain management and demand chain management are.This study aims to augment the existing knowledge of demand chain management concept and how it can be used to maximise stakeholders’ value. The study examines demand chain management through comprehensive literature review on the various definitions of demand chain management, the difference between demand chain management and how they can be integrated to achieve stakeholders’ value. It also reviews literature on evidence of demand chain management in practice. Based on the literature review a model of demand chain management is developed. The study suggests finding the balance between supply chain and demand chain in order to maximise customer value hence shareholders value.

Suggested Citation

  • Kwabena Sarpong Anning & Stephen Okyere & Jonathan Annan, 2013. "Demand Chain Management Model: A Tool for Stakeholders’ Value Creation," International Journal of Business and Social Research, LAR Center Press, vol. 3(12), pages 37-47, December.
  • Handle: RePEc:lrc:larijb:v:3:y:2013:i:12:p:37-47
    as

    Download full text from publisher

    File URL: http://thejournalofbusiness.org/index.php/site/article/view/352/318
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stephen C. Graves, 1999. "A Single-Item Inventory Model for a Nonstationary Demand Process," Manufacturing & Service Operations Management, INFORMS, vol. 1(1), pages 50-61.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pastore, Erica & Alfieri, Arianna & Zotteri, Giulio, 2019. "An empirical investigation on the antecedents of the bullwhip effect: Evidence from the spare parts industry," International Journal of Production Economics, Elsevier, vol. 209(C), pages 121-133.
    2. Prak, Dennis & Teunter, Ruud & Syntetos, Aris, 2017. "On the calculation of safety stocks when demand is forecasted," European Journal of Operational Research, Elsevier, vol. 256(2), pages 454-461.
    3. Wang, Zhaodong & Wang, Xin & Ouyang, Yanfeng, 2015. "Bounded growth of the bullwhip effect under a class of nonlinear ordering policies," European Journal of Operational Research, Elsevier, vol. 247(1), pages 72-82.
    4. Ma, Yungao & Wang, Nengmin & He, Zhengwen & Lu, Jizhou & Liang, Huigang, 2015. "Analysis of the bullwhip effect in two parallel supply chains with interacting price-sensitive demands," European Journal of Operational Research, Elsevier, vol. 243(3), pages 815-825.
    5. Nan Yang & Renyu Zhang, 2022. "Dynamic pricing and inventory management in the presence of online reviews," Production and Operations Management, Production and Operations Management Society, vol. 31(8), pages 3180-3197, August.
    6. Yiwei Chen & Vivek F. Farias, 2013. "Simple Policies for Dynamic Pricing with Imperfect Forecasts," Operations Research, INFORMS, vol. 61(3), pages 612-624, June.
    7. Zhang, Xiaolong & Burke, Gerard J., 2011. "Analysis of compound bullwhip effect causes," European Journal of Operational Research, Elsevier, vol. 210(3), pages 514-526, May.
    8. Gaalman, Gerard & Disney, Stephen M., 2009. "On bullwhip in a family of order-up-to policies with ARMA(2,2) demand and arbitrary lead-times," International Journal of Production Economics, Elsevier, vol. 121(2), pages 454-463, October.
    9. Trapero, Juan R. & Cardós, Manuel & Kourentzes, Nikolaos, 2019. "Empirical safety stock estimation based on kernel and GARCH models," Omega, Elsevier, vol. 84(C), pages 199-211.
    10. Mirko Kremer & Enno Siemsen & Douglas J. Thomas, 2016. "The Sum and Its Parts: Judgmental Hierarchical Forecasting," Management Science, INFORMS, vol. 62(9), pages 2745-2764, September.
    11. Trapero, Juan R. & Cardós, Manuel & Kourentzes, Nikolaos, 2019. "Quantile forecast optimal combination to enhance safety stock estimation," International Journal of Forecasting, Elsevier, vol. 35(1), pages 239-250.
    12. Chandra, Charu & Grabis, Janis, 2005. "Application of multi-steps forecasting for restraining the bullwhip effect and improving inventory performance under autoregressive demand," European Journal of Operational Research, Elsevier, vol. 166(2), pages 337-350, October.
    13. Yossi Aviv, 2003. "A Time-Series Framework for Supply-Chain Inventory Management," Operations Research, INFORMS, vol. 51(2), pages 210-227, April.
    14. Xiang, Mengyuan & Rossi, Roberto & Martin-Barragan, Belen & Tarim, S. Armagan, 2023. "A mathematical programming-based solution method for the nonstationary inventory problem under correlated demand," European Journal of Operational Research, Elsevier, vol. 304(2), pages 515-524.
    15. Ouyang, Yanfeng & Daganzo, Carlos, 2008. "Robust tests for the bullwhip effect in supply chains with stochastic dynamics," European Journal of Operational Research, Elsevier, vol. 185(1), pages 340-353, February.
    16. Boxiao Chen, 2021. "Data‐Driven Inventory Control with Shifting Demand," Production and Operations Management, Production and Operations Management Society, vol. 30(5), pages 1365-1385, May.
    17. Babai, M.Z. & Ali, M.M. & Boylan, J.E. & Syntetos, A.A., 2013. "Forecasting and inventory performance in a two-stage supply chain with ARIMA(0,1,1) demand: Theory and empirical analysis," International Journal of Production Economics, Elsevier, vol. 143(2), pages 463-471.
    18. Strijbosch, Leo W.G. & Syntetos, Aris A. & Boylan, John E. & Janssen, Elleke, 2011. "On the interaction between forecasting and stock control: The case of non-stationary demand," International Journal of Production Economics, Elsevier, vol. 133(1), pages 470-480, September.
    19. Syntetos, A.A. & Teunter, R.H., 2014. "On the calculation of safety stocks," Research Report 14003-OPERA, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    20. Yanfeng Ouyang & Carlos Daganzo, 2006. "Characterization of the Bullwhip Effect in Linear, Time-Invariant Supply Chains: Some Formulae and Tests," Management Science, INFORMS, vol. 52(10), pages 1544-1556, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:lrc:larijb:v:3:y:2013:i:12:p:37-47. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Al Hossain (email available below). General contact details of provider: http://www.thejournalofbusiness.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.