IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2412.00716.html
   My bibliography  Save this paper

Effects of time aggregation, product aggregation, and seasonality in measuring bullwhip ratio

Author

Listed:
  • Hau Mike Ma
  • Jiazhen Huo
  • Yongrui Duan

Abstract

The bullwhip study has received a lot of attention in the literature, but with conflicting results, especially in the context of data aggregation. In this paper, we investigate three widely studied factors in bullwhip measurement: time aggregation, product aggregation, and seasonality. In time aggregation, we decompose the variance into two components: the expectation of the subset variances and the variance of subset expectations, thus decomposing the bullwhip ratio into four components to explore the underlying mechanism of time aggregation. In product aggregation, the bullwhip ratio is analyzed in the context of products with either uncorrelated or correlated demands and orders. Seasonality is also examined to study its effect on the bullwhip ratio. Our key findings are: (a) Time aggregation can increase, decrease, or maintain the bullwhip ratio in different scenarios. (b) Aggregated bullwhip ratio of uncorrelated products is a weighted average of bullwhip ratios from individual products, with corresponding demand variance as the weights. However, aggregated bullwhip ratio of correlated products could break the boundaries. (c) Seasonality can be considered as a standalone product with a bullwhip ratio of one, which can drive the overall bullwhip ratio closer to one.

Suggested Citation

  • Hau Mike Ma & Jiazhen Huo & Yongrui Duan, 2024. "Effects of time aggregation, product aggregation, and seasonality in measuring bullwhip ratio," Papers 2412.00716, arXiv.org.
  • Handle: RePEc:arx:papers:2412.00716
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2412.00716
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dejonckheere, J. & Disney, S. M. & Lambrecht, M. R. & Towill, D. R., 2003. "Measuring and avoiding the bullwhip effect: A control theoretic approach," European Journal of Operational Research, Elsevier, vol. 147(3), pages 567-590, June.
    2. Li Chen & Hau L. Lee, 2012. "Bullwhip Effect Measurement and Its Implications," Operations Research, INFORMS, vol. 60(4), pages 771-784, August.
    3. Stephen C. Graves, 1999. "A Single-Item Inventory Model for a Nonstationary Demand Process," Manufacturing & Service Operations Management, INFORMS, vol. 1(1), pages 50-61.
    4. Hau L. Lee & V. Padmanabhan & Seungjin Whang, 1997. "Information Distortion in a Supply Chain: The Bullwhip Effect," Management Science, INFORMS, vol. 43(4), pages 546-558, April.
    5. Jin, Ming & DeHoratius, Nicole & Schmidt, Glen, 2017. "In search of intra-industry bullwhips," International Journal of Production Economics, Elsevier, vol. 191(C), pages 51-65.
    6. Robert L. Bray & Haim Mendelson, 2012. "Information Transmission and the Bullwhip Effect: An Empirical Investigation," Management Science, INFORMS, vol. 58(5), pages 860-875, May.
    7. Stephen C. Graves, 1999. "Addendum to "A Single-Item Inventory Model for a Nonstationary Demand Process"," Manufacturing & Service Operations Management, INFORMS, vol. 1(2), pages 174-174.
    8. Li Chen & Hau L. Lee, 2009. "Information Sharing and Order Variability Control Under a Generalized Demand Model," Management Science, INFORMS, vol. 55(5), pages 781-797, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xun & Disney, Stephen M., 2016. "The bullwhip effect: Progress, trends and directions," European Journal of Operational Research, Elsevier, vol. 250(3), pages 691-701.
    2. Li Chen & Wei Luo & Kevin Shang, 2017. "Measuring the Bullwhip Effect: Discrepancy and Alignment Between Information and Material Flows," Manufacturing & Service Operations Management, INFORMS, vol. 19(1), pages 36-51, February.
    3. Jalali, Hamed & Menezes, Mozart B.C., 2024. "Product portfolio adjustments and the bullwhip effect: The impact of product introduction and retirement," European Journal of Operational Research, Elsevier, vol. 318(1), pages 87-99.
    4. Minner, Stefan & Transchel, Sandra, 2017. "Order variability in perishable product supply chains," European Journal of Operational Research, Elsevier, vol. 260(1), pages 93-107.
    5. Ma, Yungao & Wang, Nengmin & He, Zhengwen & Lu, Jizhou & Liang, Huigang, 2015. "Analysis of the bullwhip effect in two parallel supply chains with interacting price-sensitive demands," European Journal of Operational Research, Elsevier, vol. 243(3), pages 815-825.
    6. QU, Zhan & RAFF, Horst, 2023. "Two-part tariffs, inventory stockpiling, and the bullwhip effect," European Journal of Operational Research, Elsevier, vol. 308(1), pages 201-214.
    7. Isaksson, Olov H.D. & Seifert, Ralf W., 2016. "Quantifying the bullwhip effect using two-echelon data: A cross-industry empirical investigation," International Journal of Production Economics, Elsevier, vol. 171(P3), pages 311-320.
    8. Ruomeng Cui & Gad Allon & Achal Bassamboo & Jan A. Van Mieghem, 2015. "Information Sharing in Supply Chains: An Empirical and Theoretical Valuation," Management Science, INFORMS, vol. 61(11), pages 2803-2824, November.
    9. Nagaraja, Chaitra H. & McElroy, Tucker, 2018. "The multivariate bullwhip effect," European Journal of Operational Research, Elsevier, vol. 267(1), pages 96-106.
    10. Pastore, Erica & Alfieri, Arianna & Zotteri, Giulio, 2019. "An empirical investigation on the antecedents of the bullwhip effect: Evidence from the spare parts industry," International Journal of Production Economics, Elsevier, vol. 209(C), pages 121-133.
    11. Ouyang, Yanfeng & Daganzo, Carlos, 2008. "Robust tests for the bullwhip effect in supply chains with stochastic dynamics," European Journal of Operational Research, Elsevier, vol. 185(1), pages 340-353, February.
    12. Babai, M.Z. & Ali, M.M. & Boylan, J.E. & Syntetos, A.A., 2013. "Forecasting and inventory performance in a two-stage supply chain with ARIMA(0,1,1) demand: Theory and empirical analysis," International Journal of Production Economics, Elsevier, vol. 143(2), pages 463-471.
    13. Robert L. Bray & Haim Mendelson, 2012. "Information Transmission and the Bullwhip Effect: An Empirical Investigation," Management Science, INFORMS, vol. 58(5), pages 860-875, May.
    14. Nagaraja, C.H. & Thavaneswaran, A. & Appadoo, S.S., 2015. "Measuring the bullwhip effect for supply chains with seasonal demand components," European Journal of Operational Research, Elsevier, vol. 242(2), pages 445-454.
    15. Lin, Junyi & Huang, Hongfu & Li, Shanshan & Naim, Mohamed M., 2023. "On the dynamics of order pipeline inventory in a nonlinear order-up-to system," International Journal of Production Economics, Elsevier, vol. 266(C).
    16. Kristianto, Yohanes & Helo, Petri & Jiao, Jianxin (Roger) & Sandhu, Maqsood, 2012. "Adaptive fuzzy vendor managed inventory control for mitigating the Bullwhip effect in supply chains," European Journal of Operational Research, Elsevier, vol. 216(2), pages 346-355.
    17. Morris A. Cohen & Panos Kouvelis, 2021. "Revisit of AAA Excellence of Global Value Chains: Robustness, Resilience, and Realignment," Production and Operations Management, Production and Operations Management Society, vol. 30(3), pages 633-643, March.
    18. Ouyang, Yanfeng & Li, Xiaopeng, 2010. "The bullwhip effect in supply chain networks," European Journal of Operational Research, Elsevier, vol. 201(3), pages 799-810, March.
    19. Robert L. Bray & Haim Mendelson, 2015. "Production Smoothing and the Bullwhip Effect," Manufacturing & Service Operations Management, INFORMS, vol. 17(2), pages 208-220, May.
    20. Boute, Robert N. & Disney, Stephen M. & Lambrecht, Marc R. & Van Houdt, Benny, 2007. "An integrated production and inventory model to dampen upstream demand variability in the supply chain," European Journal of Operational Research, Elsevier, vol. 178(1), pages 121-142, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2412.00716. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.