IDEAS home Printed from https://ideas.repec.org/a/kap/transp/v50y2023i5d10.1007_s11116-022-10300-0.html
   My bibliography  Save this article

Heuristic time-dependent personal scheduling problem with electric vehicles

Author

Listed:
  • Dimitrios Rizopoulos

    (Budapest University of Technology and Economics)

  • Domokos Esztergár-Kiss

    (Budapest University of Technology and Economics)

Abstract

In this paper, a heuristic method which contributes to the solution of the Daily Activity Chains Optimization problem with the use of Electric Vehicles (DACO-EV) is presented. The DACO-EV is a time-dependent activity-scheduling problem of individual travelers in urban environments. The heuristic method is comprised of a genetic algorithm that considers as its parameters a set of preferences of the travelers regarding their initial activity chains as well as parameters concerning the transportation network and the urban environment. The objective of the algorithm is to calculate the traveler’s optimized activity chains within a single day as they emerge from the improved combinations of the available options for each individual traveler based on their flexibility preferences. Special emphasis is laid on the underlying speed-up techniques of the GA and the mechanisms that account for specific characteristics of EVs, such as consumption according to the EV model and international standards, charging station locations, and the types of charging plugs. From the results of this study, it is proven that the method is suitable for efficiently aiding travelers in the meaningful planning of their daily activity schedules and that the algorithm can serve as a tool for the analysis and derivation of the insights into the transportation network itself.

Suggested Citation

  • Dimitrios Rizopoulos & Domokos Esztergár-Kiss, 2023. "Heuristic time-dependent personal scheduling problem with electric vehicles," Transportation, Springer, vol. 50(5), pages 2009-2048, October.
  • Handle: RePEc:kap:transp:v:50:y:2023:i:5:d:10.1007_s11116-022-10300-0
    DOI: 10.1007/s11116-022-10300-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11116-022-10300-0
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11116-022-10300-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stergios Statharas & Yannis Moysoglou & Pelopidas Siskos & Georgios Zazias & Pantelis Capros, 2019. "Factors Influencing Electric Vehicle Penetration in the EU by 2030: A Model-Based Policy Assessment," Energies, MDPI, vol. 12(14), pages 1-25, July.
    2. Domokos Esztergár-Kiss & Zoltán Rózsa & Tamás Tettamanti, 2018. "Extensions of the Activity Chain Optimization Method," Journal of Urban Technology, Taylor & Francis Journals, vol. 25(2), pages 125-142, April.
    3. Jee Eun Kang & Will Recker, 2015. "Strategic Hydrogen Refueling Station Locations with Scheduling and Routing Considerations of Individual Vehicles," Transportation Science, INFORMS, vol. 49(4), pages 767-783, November.
    4. Bowman, J. L. & Ben-Akiva, M. E., 2001. "Activity-based disaggregate travel demand model system with activity schedules," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(1), pages 1-28, January.
    5. David Charypar & Kai Nagel, 2005. "Generating complete all-day activity plans with genetic algorithms," Transportation, Springer, vol. 32(4), pages 369-397, July.
    6. Zhou, Guangyou & Zhu, Zhiwei & Luo, Sumei, 2022. "Location optimization of electric vehicle charging stations: Based on cost model and genetic algorithm," Energy, Elsevier, vol. 247(C).
    7. Recker, W. W., 1995. "The household activity pattern problem: General formulation and solution," Transportation Research Part B: Methodological, Elsevier, vol. 29(1), pages 61-77, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Zhiheng & Kang, Jee Eun & Chen, Roger, 2018. "A random utility based estimation framework for the household activity pattern problem," Transportation Research Part A: Policy and Practice, Elsevier, vol. 114(PB), pages 321-337.
    2. Dong, Xiaojing & Ben-Akiva, Moshe E. & Bowman, John L. & Walker, Joan L., 2006. "Moving from trip-based to activity-based measures of accessibility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(2), pages 163-180, February.
    3. Abdul Rawoof Pinjari & Chandra R. Bhat, 2011. "Activity-based Travel Demand Analysis," Chapters, in: André de Palma & Robin Lindsey & Emile Quinet & Roger Vickerman (ed.), A Handbook of Transport Economics, chapter 10, Edward Elgar Publishing.
    4. Thibaut Dubernet & Kay Axhausen, 2015. "Implementing a household joint activity-travel multi- agent simulation tool: first results," Transportation, Springer, vol. 42(5), pages 753-769, September.
    5. Dimitrios Rizopoulos & Domokos Esztergár-Kiss, 2020. "A Method for the Optimization of Daily Activity Chains Including Electric Vehicles," Energies, MDPI, vol. 13(4), pages 1-21, February.
    6. Ren, Xiyuan & Chow, Joseph Y.J., 2022. "A random-utility-consistent machine learning method to estimate agents’ joint activity scheduling choice from a ubiquitous data set," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 396-418.
    7. Liu, Peng & Liao, Feixiong & Tian, Qiong & Huang, Hai-Jun & Timmermans, Harry, 2020. "Day-to-day needs-based activity-travel dynamics and equilibria in multi-state supernetworks," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 208-227.
    8. Badiola, Nicolás & Raveau, Sebastián & Galilea, Patricia, 2019. "Modelling preferences towards activities and their effect on departure time choices," Transportation Research Part A: Policy and Practice, Elsevier, vol. 129(C), pages 39-51.
    9. Usman Ahmed & Ana Tsui Moreno & Rolf Moeckel, 2021. "Microscopic activity sequence generation: a multiple correspondence analysis to explain travel behavior based on socio-demographic person attributes," Transportation, Springer, vol. 48(3), pages 1481-1502, June.
    10. Usman Ahmed & Ana Tsui Moreno & Rolf Moeckel, 0. "Microscopic activity sequence generation: a multiple correspondence analysis to explain travel behavior based on socio-demographic person attributes," Transportation, Springer, vol. 0, pages 1-22.
    11. Pougala, Janody & Hillel, Tim & Bierlaire, Michel, 2022. "Capturing trade-offs between daily scheduling choices," Journal of choice modelling, Elsevier, vol. 43(C).
    12. Domokos Esztergár-Kiss, 2020. "Trip Chaining Model with Classification and Optimization Parameters," Sustainability, MDPI, vol. 12(16), pages 1-15, August.
    13. Wu, Jiabin & Li, Qihang & Bie, Yiming & Zhou, Wei, 2024. "Location-routing optimization problem for electric vehicle charging stations in an uncertain transportation network: An adaptive co-evolutionary clustering algorithm," Energy, Elsevier, vol. 304(C).
    14. Theo Arentze & Pauline van den Berg & Harry Timmermans, 2012. "Modeling Social Networks in Geographic Space: Approach and Empirical Application," Environment and Planning A, , vol. 44(5), pages 1101-1120, May.
    15. Naqavi, Fatemeh & Sundberg, Marcus & Västberg, Oskar Blom & Karlström, Anders & Hugosson, Muriel Beser, 2023. "Mobility constraints and accessibility to work: Application to Stockholm," Transportation Research Part A: Policy and Practice, Elsevier, vol. 175(C).
    16. Lazar Gitelman & Mikhail Kozhevnikov & Olga Ryzhuk, 2019. "Advance Management Education for Power-Engineering and Industry of the Future," Sustainability, MDPI, vol. 11(21), pages 1-23, October.
    17. Gurumurthy, Krishna Murthy & Kockelman, Kara M., 2021. "Impacts of shared automated vehicles on airport access and operations, with opportunities for revenue recovery: Case Study of Austin, Texas," Research in Transportation Economics, Elsevier, vol. 90(C).
    18. Allahviranloo, Mahdieh & Recker, Will, 2013. "Daily activity pattern recognition by using support vector machines with multiple classes," Transportation Research Part B: Methodological, Elsevier, vol. 58(C), pages 16-43.
    19. Bowman, J. L. & Ben-Akiva, M. E., 2001. "Activity-based disaggregate travel demand model system with activity schedules," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(1), pages 1-28, January.
    20. Liu, Xiangfei & Ren, Mifeng & Yang, Zhile & Yan, Gaowei & Guo, Yuanjun & Cheng, Lan & Wu, Chengke, 2022. "A multi-step predictive deep reinforcement learning algorithm for HVAC control systems in smart buildings," Energy, Elsevier, vol. 259(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:transp:v:50:y:2023:i:5:d:10.1007_s11116-022-10300-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.