IDEAS home Printed from https://ideas.repec.org/a/taf/cjutxx/v25y2018i2p125-142.html
   My bibliography  Save this article

Extensions of the Activity Chain Optimization Method

Author

Listed:
  • Domokos Esztergár-Kiss
  • Zoltán Rózsa
  • Tamás Tettamanti

Abstract

For the optimization of daily activity chains a novel method has been elaborated, where flexible demand points were introduced. Some activities are not necessarily fixed temporally and spatially, therefore they can be realized in different times or locations. By using flexible demand points, the method is capable of finding new combinations of activity chains and choosing the optimal set of activities. The optimization algorithm solves the TSP-TW (Traveling Salesman Problem – Time Window) problem with many flexible demand points, which resulted in high complexity and long processing times. Therefore, two extensions were developed to speed up the processes. A POI (Point Of Interest) search algorithm enabled to search demand points in advance and store them in an offline database. Furthermore GA (genetic algorithm) was applied and customized to realize lower optimization times. During the implementation, three different transportation modes were defined: car, public transport, and combined (public transport with car-sharing opportunity). The simulations were performed on arbitrarily chosen test networks using Matlab. Promising test results were obtained for all transportation modes with total travel time reduction of 10–15 percent. The application of the extended optimization method produced shorter activity chains and decreased total travel time for the users.

Suggested Citation

  • Domokos Esztergár-Kiss & Zoltán Rózsa & Tamás Tettamanti, 2018. "Extensions of the Activity Chain Optimization Method," Journal of Urban Technology, Taylor & Francis Journals, vol. 25(2), pages 125-142, April.
  • Handle: RePEc:taf:cjutxx:v:25:y:2018:i:2:p:125-142
    DOI: 10.1080/10630732.2017.1407998
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10630732.2017.1407998
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10630732.2017.1407998?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dimitrios Rizopoulos & Domokos Esztergár-Kiss, 2023. "Heuristic time-dependent personal scheduling problem with electric vehicles," Transportation, Springer, vol. 50(5), pages 2009-2048, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:cjutxx:v:25:y:2018:i:2:p:125-142. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/cjut20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.