IDEAS home Printed from https://ideas.repec.org/a/kap/transp/v49y2022i3d10.1007_s11116-021-10199-z.html
   My bibliography  Save this article

Impacts of highly automated vehicles on travel demand: macroscopic modeling methods and some results

Author

Listed:
  • Jörg Sonnleitner

    (Chair for Transport Planning and Traffic Engineering)

  • Markus Friedrich

    (Chair for Transport Planning and Traffic Engineering)

  • Emely Richter

    (Chair for Transport Planning and Traffic Engineering)

Abstract

Automated vehicles (AV) will change transport supply and influence travel demand. To evaluate those changes, existing travel demand models need to be extended. This paper presents ways of integrating characteristics of AV into traditional macroscopic travel demand models based on the four-step algorithm. It discusses two model extensions. The first extension allows incorporating impacts of AV on traffic flow performance by assigning specific passenger car unit factors that depend on roadway type and the capabilities of the vehicles. The second extension enables travel demand models to calculate demand changes caused by a different perception of travel time as the active driving time is reduced. The presented methods are applied to a use case of a regional macroscopic travel demand model. The basic assumption is that AV are considered highly but not fully automated and still require a driver for parts of the trip. Model results indicate that first-generation AV, probably being rather cautious, may decrease traffic performance. Further developed AV will improve performance on some parts of the network. Together with a reduction in active driving time, cars will become even more attractive, resulting in a modal shift towards car. Both circumstances lead to an increase in time spent and distance traveled.

Suggested Citation

  • Jörg Sonnleitner & Markus Friedrich & Emely Richter, 2022. "Impacts of highly automated vehicles on travel demand: macroscopic modeling methods and some results," Transportation, Springer, vol. 49(3), pages 927-950, June.
  • Handle: RePEc:kap:transp:v:49:y:2022:i:3:d:10.1007_s11116-021-10199-z
    DOI: 10.1007/s11116-021-10199-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11116-021-10199-z
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11116-021-10199-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daniel J. Fagnant & Kara M. Kockelman, 2018. "Dynamic ride-sharing and fleet sizing for a system of shared autonomous vehicles in Austin, Texas," Transportation, Springer, vol. 45(1), pages 143-158, January.
    2. Kröger, Lars & Kuhnimhof, Tobias & Trommer, Stefan, 2019. "Does context matter? A comparative study modelling autonomous vehicle impact on travel behaviour for Germany and the USA," Transportation Research Part A: Policy and Practice, Elsevier, vol. 122(C), pages 146-161.
    3. Malokin, Aliaksandr & Circella, Giovanni & Mokhtarian, Patricia L., 2019. "How do activities conducted while commuting influence mode choice? Using revealed preference models to inform public transportation advantage and autonomous vehicle scenarios," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 82-114.
    4. Correia, Gonçalo Homem de Almeida & Looff, Erwin & van Cranenburgh, Sander & Snelder, Maaike & van Arem, Bart, 2019. "On the impact of vehicle automation on the value of travel time while performing work and leisure activities in a car: Theoretical insights and results from a stated preference survey," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 359-382.
    5. Patrice Marcotte & Laura Wynter, 2004. "A New Look at the Multiclass Network Equilibrium Problem," Transportation Science, INFORMS, vol. 38(3), pages 282-292, August.
    6. Aggelos Soteropoulos & Martin Berger & Francesco Ciari, 2019. "Impacts of automated vehicles on travel behaviour and land use: an international review of modelling studies," Transport Reviews, Taylor & Francis Journals, vol. 39(1), pages 29-49, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fatemeh Nazari & Mohamadhossein Noruzoliaee & Abolfazl Mohammadian, 2023. "Behavioral acceptance of automated vehicles: The roles of perceived safety concern and current travel behavior," Papers 2302.12225, arXiv.org, revised Jan 2024.
    2. Jiang, Like & Chen, Haibo & Chen, Zhiyang, 2022. "City readiness for connected and autonomous vehicles: A multi-stakeholder and multi-criteria analysis through analytic hierarchy process," Transport Policy, Elsevier, vol. 128(C), pages 13-24.
    3. Shelly Etzioni & Jamil Hamadneh & Arnór B. Elvarsson & Domokos Esztergár-Kiss & Milena Djukanovic & Stelios N. Neophytou & Jaka Sodnik & Amalia Polydoropoulou & Ioannis Tsouros & Cristina Pronello & N, 2020. "Modeling Cross-National Differences in Automated Vehicle Acceptance," Sustainability, MDPI, vol. 12(22), pages 1-22, November.
    4. Sun, Shanshan & Wong, Yiik Diew, 2023. "Drivers’ attention economy and adoption to autonomous vehicle," Transport Policy, Elsevier, vol. 138(C), pages 108-118.
    5. Pudāne, Baiba, 2019. "Departure Time Choice and Bottleneck Congestion with Automated Vehicles: Role of On-board Activities," MPRA Paper 96328, University Library of Munich, Germany.
    6. Pudāne, Baiba & van Cranenburgh, Sander & Chorus, Caspar G., 2021. "A day in the life with an automated vehicle: Empirical analysis of data from an interactive stated activity-travel survey," Journal of choice modelling, Elsevier, vol. 39(C).
    7. Dannemiller, Katherine A. & Mondal, Aupal & Asmussen, Katherine E. & Bhat, Chandra R., 2021. "Investigating autonomous vehicle impacts on individual activity-travel behavior," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 402-422.
    8. Anastasia Roukouni & Gonçalo Homem de Almeida Correia, 2020. "Evaluation Methods for the Impacts of Shared Mobility: Classification and Critical Review," Sustainability, MDPI, vol. 12(24), pages 1-22, December.
    9. Limin Tan & Changxi Ma & Xuecai Xu & Jin Xu, 2019. "Choice Behavior of Autonomous Vehicles Based on Logistic Models," Sustainability, MDPI, vol. 12(1), pages 1-16, December.
    10. Hamadneh, Jamil & Duleba, Szabolcs & Esztergár-Kiss, Domokos, 2022. "Stakeholder viewpoints analysis of the autonomous vehicle industry by using multi-actors multi-criteria analysis," Transport Policy, Elsevier, vol. 126(C), pages 65-84.
    11. Liliana Andrei & Oana Luca & Florian Gaman, 2022. "Insights from User Preferences on Automated Vehicles: Influence of Socio-Demographic Factors on Value of Time in Romania Case," Sustainability, MDPI, vol. 14(17), pages 1-22, August.
    12. Lee, Jaehyung & Lee, Euntak & Yun, Jaewoong & Chung, Jin-Hyuk & Kim, Jinhee, 2021. "Latent heterogeneity in autonomous driving preferences and in-vehicle activities by travel distance," Journal of Transport Geography, Elsevier, vol. 94(C).
    13. Li, Dun & Huang, Youlin & Qian, Lixian, 2022. "Potential adoption of robotaxi service: The roles of perceived benefits to multiple stakeholders and environmental awareness," Transport Policy, Elsevier, vol. 126(C), pages 120-135.
    14. Bounie, Nathan & Adoue, François & Koning, Martin & L'Hostis, Alain, 2019. "What value do travelers put on connectivity to mobile phone and Internet networks in public transport? Empirical evidence from the Paris region," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 158-177.
    15. Shariful Malik & Mohammad Shahidul Hasan Swapan & Shahed Khan, 2020. "Sustainable Mobility through Safer Roads: Translating Road Safety Strategy into Local Context in Western Australia," Sustainability, MDPI, vol. 12(21), pages 1-20, October.
    16. Saeed, Tariq Usman & Burris, Mark W. & Labi, Samuel & Sinha, Kumares C., 2020. "An empirical discourse on forecasting the use of autonomous vehicles using consumers’ preferences," Technological Forecasting and Social Change, Elsevier, vol. 158(C).
    17. Nadafianshahamabadi, Razieh & Tayarani, Mohammad & Rowangould, Gregory, 2021. "A closer look at urban development under the emergence of autonomous vehicles: Traffic, land use and air quality impacts," Journal of Transport Geography, Elsevier, vol. 94(C).
    18. Jara-Diaz, Sergio, 2024. "The value(s) of travel time savings considering in-vehicle activities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 184(C).
    19. Esko Lehtonen & Johanna Wörle & Fanny Malin & Barbara Metz & Satu Innamaa, 2022. "Travel experience matters: Expected personal mobility impacts after simulated L3/L4 automated driving," Transportation, Springer, vol. 49(5), pages 1295-1314, October.
    20. Fan, Qiaochu & van Essen, J. Theresia & Correia, Gonçalo H.A., 2024. "A bi-level framework for heterogeneous fleet sizing of ride-hailing services considering an approximated mixed equilibrium between automated and non-automated traffic," European Journal of Operational Research, Elsevier, vol. 315(3), pages 879-898.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:transp:v:49:y:2022:i:3:d:10.1007_s11116-021-10199-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.