IDEAS home Printed from https://ideas.repec.org/a/kap/transp/v45y2018i5d10.1007_s11116-017-9775-1.html
   My bibliography  Save this article

Passengers’ response to transit fare change: an ex post appraisal using smart card data

Author

Listed:
  • Zi-jia Wang

    (Beijing Jiaotong University)

  • Feng Chen

    (Beijing Jiaotong University
    Beijing Engineering and Technology Research Center of Rail Transit Line Safety and Disaster Prevention)

  • Bo Wang

    (Beijing Transportation Information Center)

  • Jian-ling Huang

    (Beijing Transportation Information Center)

Abstract

Fare change is an effective tool for public transit demand management. An automatic fare collection system not only allows the implementation of complex fare policies, but also provides abundant data for impact analysis of fare change. This study proposes an assessment approach for analyzing the influence when substituting a flat-fare policy with a distance-based fare policy, using smart card data. The method can be used to analyze the impact of fare change on demand, riding distances, as well as price elasticity of demand at different time and distance intervals. Taking the fare change of Beijing Metro implemented in 2014 as a case study, we analyze the change of network demand at various levels, riding distances, and demand elasticity of different distances on weekdays and weekends, using the method established and the smart card data a week before and after the fare change. The policy implication of the fare change was also addressed. The results suggest that the fare change had a significant impact on overall demand, but not so much on riding distances. The greatest sensitivity to fare change is shown by weekend passengers, followed by passengers in the evening weekday peak time, while the morning weekday peak time passengers show little sensitivity. A great variety of passengers’ responses to fare change exists at station level because stations serve different types of land usage or generate trips with distinct purposes at different times. Rising fares can greatly increase revenue, and can shift trips to cycling and walking to a certain extent, but not so much as to mitigate overcrowding at morning peak times. The results are compared with those of the ex ante evaluation that used a stated preference survey, and the comparison illustrates that the price elasticity of demand extracted from the stated preference survey significantly exaggerates passengers’ responses to fare increase.

Suggested Citation

  • Zi-jia Wang & Feng Chen & Bo Wang & Jian-ling Huang, 2018. "Passengers’ response to transit fare change: an ex post appraisal using smart card data," Transportation, Springer, vol. 45(5), pages 1559-1578, September.
  • Handle: RePEc:kap:transp:v:45:y:2018:i:5:d:10.1007_s11116-017-9775-1
    DOI: 10.1007/s11116-017-9775-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11116-017-9775-1
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11116-017-9775-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Joyce M. Dargay & Mark Hanly, 2002. "The Demand for Local Bus Services in England," Journal of Transport Economics and Policy, University of Bath, vol. 36(1), pages 73-91, January.
    2. Farber, Steven & Bartholomew, Keith & Li, Xiao & Páez, Antonio & Nurul Habib, Khandker M., 2014. "Assessing social equity in distance based transit fares using a model of travel behavior," Transportation Research Part A: Policy and Practice, Elsevier, vol. 67(C), pages 291-303.
    3. de Grange, Louis & González, Felipe & Muñoz, Juan Carlos & Troncoso, Rodrigo, 2013. "Aggregate estimation of the price elasticity of demand for public transport in integrated fare systems: The case of Transantiago," Transport Policy, Elsevier, vol. 29(C), pages 178-185.
    4. Paulley, Neil & Balcombe, Richard & Mackett, Roger & Titheridge, Helena & Preston, John & Wardman, Mark & Shires, Jeremy & White, Peter, 2006. "The demand for public transport: The effects of fares, quality of service, income and car ownership," Transport Policy, Elsevier, vol. 13(4), pages 295-306, July.
    5. Abrate, Graziano & Piacenza, Massimiliano & Vannoni, Davide, 2009. "The impact of Integrated Tariff Systems on public transport demand: Evidence from Italy," Regional Science and Urban Economics, Elsevier, vol. 39(2), pages 120-127, March.
    6. Hensher, David A., 2008. "Assessing systematic sources of variation in public transport elasticities: Some comparative warnings," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(7), pages 1031-1042, August.
    7. Sharaby, Nir & Shiftan, Yoram, 2012. "The impact of fare integration on travel behavior and transit ridership," Transport Policy, Elsevier, vol. 21(C), pages 63-70.
    8. Bresson, Georges & Dargay, Joyce & Madre, Jean-Loup & Pirotte, Alain, 2003. "The main determinants of the demand for public transport: a comparative analysis of England and France using shrinkage estimators," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(7), pages 605-627, August.
    9. Wang, Zi-jia & Li, Xiao-hong & Chen, Feng, 2015. "Impact evaluation of a mass transit fare change on demand and revenue utilizing smart card data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 213-224.
    10. Gkritza, Konstantina & Karlaftis, Matthew G. & Mannering, Fred L., 2011. "Estimating multimodal transit ridership with a varying fare structure," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(2), pages 148-160, February.
    11. Holmgren, Johan, 2007. "Meta-analysis of public transport demand," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(10), pages 1021-1035, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kholodov, Yaroslav & Jenelius, Erik & Cats, Oded & van Oort, Niels & Mouter, Niek & Cebecauer, Matej & Vermeulen, Alex, 2021. "Public transport fare elasticities from smartcard data: Evidence from a natural experiment," Transport Policy, Elsevier, vol. 105(C), pages 35-43.
    2. Chen, Ruoyu & Zhou, Jiangping, 2022. "Fare adjustment’s impacts on travel patterns and farebox revenue: An empirical study based on longitudinal smartcard data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 164(C), pages 111-133.
    3. Suchi Kapoor Malhotra & Howard White & Nina Ashley O. Dela Cruz & Ashrita Saran & John Eyers & Denny John & Ella Beveridge & Nina Blöndal, 2021. "Studies of the effectiveness of transport sector interventions in low‐ and middle‐income countries: An evidence and gap map," Campbell Systematic Reviews, John Wiley & Sons, vol. 17(4), December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiechao Zhang & Xuedong Yan & Meiwu An & Li Sun, 2017. "The Impact of Beijing Subway’s New Fare Policy on Riders’ Attitude, Travel Pattern and Demand," Sustainability, MDPI, vol. 9(5), pages 1-21, April.
    2. Guzman, Luis A. & Beltran, Carlos & Bonilla, Jorge & Gomez Cardona, Santiago, 2021. "BRT fare elasticities from smartcard data: Spatial and time-of-the-day differences," Transportation Research Part A: Policy and Practice, Elsevier, vol. 150(C), pages 335-348.
    3. Wang, Zi-jia & Li, Xiao-hong & Chen, Feng, 2015. "Impact evaluation of a mass transit fare change on demand and revenue utilizing smart card data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 213-224.
    4. Luis A. Guzman & Santiago Gomez & Carlos Alberto Moncada, 2020. "Short run fare elasticities for Bogotá’s BRT system: ridership responses to fare increases," Transportation, Springer, vol. 47(5), pages 2581-2599, October.
    5. Yaman, Firat & Offiaeli, Kingsley, 2022. "Is the price elasticity of demand asymmetric? Evidence from public transport demand," Journal of Economic Behavior & Organization, Elsevier, vol. 203(C), pages 318-335.
    6. Liu, Yan & Wang, Siqin & Xie, Bin, 2019. "Evaluating the effects of public transport fare policy change together with built and non-built environment features on ridership: The case in South East Queensland, Australia," Transport Policy, Elsevier, vol. 76(C), pages 78-89.
    7. Thommen, Christoph & Hintermann, Beat, 2023. "Price versus Commitment: Managing the demand for off-peak train tickets in a field experiment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 174(C).
    8. Redman, Lauren & Friman, Margareta & Gärling, Tommy & Hartig, Terry, 2013. "Quality attributes of public transport that attract car users: A research review," Transport Policy, Elsevier, vol. 25(C), pages 119-127.
    9. Souche, Stéphanie, 2010. "Measuring the structural determinants of urban travel demand," Transport Policy, Elsevier, vol. 17(3), pages 127-134, May.
    10. Hörcher, Daniel & Tirachini, Alejandro, 2021. "A review of public transport economics," Economics of Transportation, Elsevier, vol. 25(C).
    11. Rahman, Syed & Balijepalli, Chandra, 2016. "Understanding the determinants of demand for public transport: Evidence from suburban rail operations in five divisions of Indian Railways," Transport Policy, Elsevier, vol. 48(C), pages 13-22.
    12. Hannes Wallimann & Kevin Blattler & Widar von Arx, 2021. "Do price reductions attract customers in urban public transport? A synthetic control approach," Papers 2111.14613, arXiv.org, revised Mar 2022.
    13. Matas, Anna & Raymond, Josep-Lluis & Ruiz, Adriana, 2020. "Economic and distributional effects of different fare schemes: Evidence from the Metropolitan Region of Barcelona," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 1-14.
    14. Sharaby, Nir & Shiftan, Yoram, 2012. "The impact of fare integration on travel behavior and transit ridership," Transport Policy, Elsevier, vol. 21(C), pages 63-70.
    15. Chen, Ruoyu & Zhou, Jiangping, 2022. "Fare adjustment’s impacts on travel patterns and farebox revenue: An empirical study based on longitudinal smartcard data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 164(C), pages 111-133.
    16. Souche, Stéphanie, 2009. "Un exemple d’estimation de la demande de transport urbain," Revue d'économie régionale et urbaine, Editions NecPlus, vol. 2009(04), pages 759-779, December.
    17. Hiroaki Nishiuchi & Yasuyuki Kobayashi & Tomoyuki Todoroki & Tomoya Kawasaki, 2018. "Impact analysis of reductions in tram services in rural areas in Japan using smart card data," Public Transport, Springer, vol. 10(2), pages 291-309, August.
    18. Verbich, David & El-Geneidy, Ahmed, 2017. "Public transit fare structure and social vulnerability in Montreal, Canada," Transportation Research Part A: Policy and Practice, Elsevier, vol. 96(C), pages 43-53.
    19. Holmgren, Johan, 2010. "Putting our money to good use: Can we attract more passengers without increasing subsidies?," Research in Transportation Economics, Elsevier, vol. 29(1), pages 256-260.
    20. de Grange, Louis & González, Felipe & Muñoz, Juan Carlos & Troncoso, Rodrigo, 2013. "Aggregate estimation of the price elasticity of demand for public transport in integrated fare systems: The case of Transantiago," Transport Policy, Elsevier, vol. 29(C), pages 178-185.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:transp:v:45:y:2018:i:5:d:10.1007_s11116-017-9775-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.