IDEAS home Printed from https://ideas.repec.org/a/kap/theord/v93y2022i1d10.1007_s11238-021-09831-2.html
   My bibliography  Save this article

Trading transforms of non-weighted simple games and integer weights of weighted simple games

Author

Listed:
  • Akihiro Kawana

    (Tokyo Institute of Technology)

  • Tomomi Matsui

    (Tokyo Institute of Technology)

Abstract

This study investigates simple games. A fundamental research question in this field is to determine necessary and sufficient conditions for a simple game to be a weighted majority game. Taylor and Zwicker (Proc Am Math Soc 115:1089–1094, 1992) showed that a simple game is non-weighted if and only if there exists a trading transform of finite size. They also provided an upper bound on the size of such a trading transform, if it exists. Gvozdeva and Slinko (Math Soc Sci 61:20–30, 2011) improved that upper bound; their proof employed a property of linear inequalities demonstrated by Muroga (Threshold logic and its applications, 1971). In this study, we provide a new proof of the existence of a trading transform when a given simple game is non-weighted. Our proof employs Farkas’ lemma (1902), and yields an improved upper bound on the size of a trading transform. We also discuss an integer-weight representation of a weighted simple game, improving the bounds obtained by Muroga (Threshold logic and its applications, 1971). We show that our bound on the quota is tight when the number of players is less than or equal to five, based on the computational results obtained by Kurz (Ann Oper Res 196:361–369, 2012). Furthermore, we discuss the problem of finding an integer-weight representation under the assumption that we have minimal winning coalitions and maximal losing coalitions. In particular, we show a performance of a rounding method. Finally, we address roughly weighted simple games. Gvozdeva and Slinko (Math Soc Sci 61:20–30, 2011) showed that a given simple game is not roughly weighted if and only if there exists a potent certificate of non-weightedness. We give an upper bound on the length of a potent certificate of non-weightedness. We also discuss an integer-weight representation of a roughly weighted simple game.

Suggested Citation

  • Akihiro Kawana & Tomomi Matsui, 2022. "Trading transforms of non-weighted simple games and integer weights of weighted simple games," Theory and Decision, Springer, vol. 93(1), pages 131-150, July.
  • Handle: RePEc:kap:theord:v:93:y:2022:i:1:d:10.1007_s11238-021-09831-2
    DOI: 10.1007/s11238-021-09831-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11238-021-09831-2
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11238-021-09831-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Josep Freixas & Xavier Molinero, 2009. "On the existence of a minimum integer representation for weighted voting systems," Annals of Operations Research, Springer, vol. 166(1), pages 243-260, February.
    2. Ali Hameed & Arkadii Slinko, 2015. "Roughly weighted hierarchical simple games," International Journal of Game Theory, Springer;Game Theory Society, vol. 44(2), pages 295-319, May.
    3. Gvozdeva, Tatiana & Slinko, Arkadii, 2011. "Weighted and roughly weighted simple games," Mathematical Social Sciences, Elsevier, vol. 61(1), pages 20-30, January.
    4. Sascha Kurz, 2012. "On minimum sum representations for weighted voting games," Annals of Operations Research, Springer, vol. 196(1), pages 361-369, July.
    5. Josep Freixas & Sascha Kurz, 2014. "On $${\alpha }$$ α -roughly weighted games," International Journal of Game Theory, Springer;Game Theory Society, vol. 43(3), pages 659-692, August.
    6. Tatiana Gvozdeva & Lane Hemaspaandra & Arkadii Slinko, 2013. "Three hierarchies of simple games parameterized by “resource” parameters," International Journal of Game Theory, Springer;Game Theory Society, vol. 42(1), pages 1-17, February.
    7. Josep Freixas & Marc Freixas & Sascha Kurz, 2017. "On the characterization of weighted simple games," Theory and Decision, Springer, vol. 83(4), pages 469-498, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sylvain Béal & Marc Deschamps & Mostapha Diss & Issofa Moyouwou, 2022. "Inconsistent weighting in weighted voting games," Public Choice, Springer, vol. 191(1), pages 75-103, April.
    2. Le Breton, Michel & Montero, Maria & Zaporozhets, Vera, 2012. "Voting power in the EU council of ministers and fair decision making in distributive politics," Mathematical Social Sciences, Elsevier, vol. 63(2), pages 159-173.
    3. Freixas, Josep & Kurz, Sascha, 2013. "The golden number and Fibonacci sequences in the design of voting structures," European Journal of Operational Research, Elsevier, vol. 226(2), pages 246-257.
    4. Tanaka, Masato & Matsui, Tomomi, 2022. "Pseudo polynomial size LP formulation for calculating the least core value of weighted voting games," Mathematical Social Sciences, Elsevier, vol. 115(C), pages 47-51.
    5. Josep Freixas & Sascha Kurz, 2014. "Enumeration of weighted games with minimum and an analysis of voting power for bipartite complete games with minimum," Annals of Operations Research, Springer, vol. 222(1), pages 317-339, November.
    6. Freixas, Josep & Kurz, Sascha, 2014. "On minimum integer representations of weighted games," Mathematical Social Sciences, Elsevier, vol. 67(C), pages 9-22.
    7. Serguei Kaniovski & Sascha Kurz, 2018. "Representation-compatible power indices," Annals of Operations Research, Springer, vol. 264(1), pages 235-265, May.
    8. Freixas, Josep & Kaniovski, Serguei, 2014. "The minimum sum representation as an index of voting power," European Journal of Operational Research, Elsevier, vol. 233(3), pages 739-748.
    9. Kurz, Sascha & Mayer, Alexander & Napel, Stefan, 2020. "Weighted committee games," European Journal of Operational Research, Elsevier, vol. 282(3), pages 972-979.
    10. Sascha Kurz & Stefan Napel, 2014. "Heuristic and exact solutions to the inverse power index problem for small voting bodies," Annals of Operations Research, Springer, vol. 215(1), pages 137-163, April.
    11. Xavier Molinero & Maria Serna & Marc Taberner-Ortiz, 2021. "On Weights and Quotas for Weighted Majority Voting Games," Games, MDPI, vol. 12(4), pages 1-25, December.
    12. Michel Le Breton & Karine Van Der Straeten, 2017. "Alliances Électorales et Gouvernementales : La Contribution de la Théorie des Jeux Coopératifs à la Science Politique," Revue d'économie politique, Dalloz, vol. 127(4), pages 637-736.
    13. Fabrice Barthelemy & Dominique Lepelley & Mathieu Martin & Hatem Smaoui, 2021. "Dummy Players and the Quota in Weighted Voting Games," Group Decision and Negotiation, Springer, vol. 30(1), pages 43-61, February.
    14. Josep Freixas & Marc Freixas & Sascha Kurz, 2017. "On the characterization of weighted simple games," Theory and Decision, Springer, vol. 83(4), pages 469-498, December.
    15. Frits Hof & Walter Kern & Sascha Kurz & Kanstantsin Pashkovich & Daniël Paulusma, 2020. "Simple games versus weighted voting games: bounding the critical threshold value," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 54(4), pages 609-621, April.
    16. Monisankar Bishnu & Sonali Roy, 2012. "Hierarchy of players in swap robust voting games," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 38(1), pages 11-22, January.
    17. Maria Montero & Alex Possajennikov, 2021. "An Adaptive Model of Demand Adjustment in Weighted Majority Games," Games, MDPI, vol. 13(1), pages 1-17, December.
    18. René Brink & Dinko Dimitrov & Agnieszka Rusinowska, 2021. "Winning coalitions in plurality voting democracies," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 56(3), pages 509-530, April.
    19. Le Breton, Michel & Lepelley, Dominique & Macé, Antonin & Merlin, Vincent, 2017. "Le mécanisme optimal de vote au sein du conseil des représentants d’un système fédéral," L'Actualité Economique, Société Canadienne de Science Economique, vol. 93(1-2), pages 203-248, Mars-Juin.
    20. Tatiana Gvozdeva & Lane Hemaspaandra & Arkadii Slinko, 2013. "Three hierarchies of simple games parameterized by “resource” parameters," International Journal of Game Theory, Springer;Game Theory Society, vol. 42(1), pages 1-17, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:theord:v:93:y:2022:i:1:d:10.1007_s11238-021-09831-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.