IDEAS home Printed from https://ideas.repec.org/p/ris/albaec/2016_001.html
   My bibliography  Save this paper

Optimal Policies to Promote Efficient Distributed Generation of Electricity

Author

Listed:
  • Brown, David P.

    (University of Alberta, Department of Economics)

  • Sappington, David E. M.

    (University of Florida)

Abstract

We analyze the design of policies to promote efficient distributed generation (DG) of electricity. The optimal policy varies with the set of instruments available to the regulator and with the prevailing DG production technology. DG capacity charges often play a valuable role in inducing optimal investment in DG capacity, allowing payments for DG production to induce the optimal production of electricity using non-intermittent DG technologies. Net metering can be optimal in certain settings, but often is not optimal, especially for non-intermittent DG technologies.

Suggested Citation

  • Brown, David P. & Sappington, David E. M., 2016. "Optimal Policies to Promote Efficient Distributed Generation of Electricity," Working Papers 2016-1, University of Alberta, Department of Economics.
  • Handle: RePEc:ris:albaec:2016_001
    as

    Download full text from publisher

    File URL: https://sites.ualberta.ca/~econwps/2016/wp2016-01.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. David P. Brown & David E. M. Sappington, 2016. "On the optimal design of demand response policies," Journal of Regulatory Economics, Springer, vol. 49(3), pages 265-291, June.
    2. David P. Brown & David E. M. Sappington, 2017. "Optimal policies to promote efficient distributed generation of electricity," Journal of Regulatory Economics, Springer, vol. 52(2), pages 159-188, October.
    3. Natalia Fabra & Mar Reguant, 2014. "Pass-Through of Emissions Costs in Electricity Markets," American Economic Review, American Economic Association, vol. 104(9), pages 2872-2899, September.
    4. Brown, David & Sappington, David, 2014. "On the Optimal Design of Distributed Generation Policies: Is Net Metering Ever Optimal?," Working Papers 2014-12, University of Alberta, Department of Economics.
    5. Thomas Taylor & Peter Schwarz & James Cochell, 2005. "24/7 Hourly Response to Electricity Real-Time Pricing with up to Eight Summers of Experience," Journal of Regulatory Economics, Springer, vol. 27(3), pages 235-262, January.
    6. Brown, David P. & Sappington, David E.M., 2018. "On the role of maximum demand charges in the presence of distributed generation resources," Energy Economics, Elsevier, vol. 69(C), pages 237-249.
    7. Darghouth, Naïm R. & Barbose, Galen & Wiser, Ryan H., 2014. "Customer-economics of residential photovoltaic systems (Part 1): The impact of high renewable energy penetrations on electricity bill savings with net metering," Energy Policy, Elsevier, vol. 67(C), pages 290-300.
    8. Paul, Anthony & Myers, Erica & Palmer, Karen, 2009. "A Partial Adjustment Model of U.S. Electricity Demand by Region, Season, and Sector," RFF Working Paper Series dp-08-50, Resources for the Future.
    9. Timothy Brennan, 2010. "Decoupling in electric utilities," Journal of Regulatory Economics, Springer, vol. 38(1), pages 49-69, August.
    10. Couture, Toby & Gagnon, Yves, 2010. "An analysis of feed-in tariff remuneration models: Implications for renewable energy investment," Energy Policy, Elsevier, vol. 38(2), pages 955-965, February.
    11. Baumol, William J & Bradford, David F, 1970. "Optimal Departures from Marginal Cost Pricing," American Economic Review, American Economic Association, vol. 60(3), pages 265-283, June.
    12. Espey, James A. & Espey, Molly, 2004. "Turning on the Lights: A Meta-Analysis of Residential Electricity Demand Elasticities," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 36(1), pages 65-81, April.
    13. Leon Chu & David Sappington, 2013. "Motivating energy suppliers to promote energy conservation," Journal of Regulatory Economics, Springer, vol. 43(3), pages 229-247, June.
    14. Hung-po Chao, 2011. "Demand response in wholesale electricity markets: the choice of customer baseline," Journal of Regulatory Economics, Springer, vol. 39(1), pages 68-88, February.
    15. James Bushnell, 2007. "Oligopoly equilibria in electricity contract markets," Journal of Regulatory Economics, Springer, vol. 32(3), pages 225-245, December.
    16. Severin Borenstein, 2017. "Private Net Benefits of Residential Solar PV: The Role of Electricity Tariffs, Tax Incentives, and Rebates," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 4(S1), pages 85-122.
    17. Brennan, Timothy J., 2010. "Optimal energy efficiency policies and regulatory demand-side management tests: How well do they match?," Energy Policy, Elsevier, vol. 38(8), pages 3874-3885, August.
    18. Darghouth, Naïm R. & Barbose, Galen & Wiser, Ryan, 2011. "The impact of rate design and net metering on the bill savings from distributed PV for residential customers in California," Energy Policy, Elsevier, vol. 39(9), pages 5243-5253, September.
    19. Branker, K. & Pathak, M.J.M. & Pearce, J.M., 2011. "A review of solar photovoltaic levelized cost of electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4470-4482.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David P. Brown & David E. M. Sappington, 2017. "Optimal policies to promote efficient distributed generation of electricity," Journal of Regulatory Economics, Springer, vol. 52(2), pages 159-188, October.
    2. Spiller, Elisheba & Esparza, Ricardo & Mohlin, Kristina & Tapia-Ahumada, Karen & Ünel, Burçin, 2023. "The role of electricity tariff design in distributed energy resource deployment," Energy Economics, Elsevier, vol. 120(C).
    3. Georgi N. Todorov & Andrey I. Vlasov & Elena E. Volkova & Marina A. Osintseva, 2020. "Sustainability in Local Power Supply Systems of Production Facilities Where There Is the Compensatory Use of Renewable Energy Sources," International Journal of Energy Economics and Policy, Econjournals, vol. 10(3), pages 14-23.
    4. Wagner, Johannes, 2018. "Distributed Generation in Unbundled Electricity Markets," EWI Working Papers 2018-1, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    5. Michas, Serafeim & Stavrakas, Vassilis & Papadelis, Sotiris & Flamos, Alexandros, 2020. "A transdisciplinary modeling framework for the participatory design of dynamic adaptive policy pathways," Energy Policy, Elsevier, vol. 139(C).
    6. Boampong, Richard & Brown, David P., 2020. "On the benefits of behind-the-meter rooftop solar and energy storage: The importance of retail rate design," Energy Economics, Elsevier, vol. 86(C).
    7. Wangsness, Paal Brevik & Proost, Stef & Rødseth, Kenneth Løvold, 2021. "Optimal policies for electromobility: Joint assessment of transport and electricity distribution costs in Norway," Utilities Policy, Elsevier, vol. 72(C).
    8. Axel Gautier & Julien Jacqmin, 2020. "PV adoption: the role of distribution tariffs under net metering," Journal of Regulatory Economics, Springer, vol. 57(1), pages 53-73, February.
    9. Axel Gautier & Julien Jacqmin & Jean-Christophe Poudou, 2018. "The prosumers and the grid," Journal of Regulatory Economics, Springer, vol. 53(1), pages 100-126, February.
    10. Robert Clark & Mario Samano, 2022. "Incentivized Mergers and Cost Efficiency: Evidence from the Electricity Distribution Industry," Journal of Industrial Economics, Wiley Blackwell, vol. 70(4), pages 791-837, December.
    11. Venkatraman, Athindra & Thatte, Anupam A. & Xie, Le, 2021. "A smart meter data-driven distribution utility rate model for networks with prosumers," Utilities Policy, Elsevier, vol. 70(C).
    12. Cambini, Carlo & Soroush, Golnoush, 2019. "Designing grid tariffs in the presence of distributed generation," Utilities Policy, Elsevier, vol. 61(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David P. Brown & David E. M. Sappington, 2017. "Designing Compensation for Distributed Solar Generation: Is Net Metering Ever Optimal?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    2. David P. Brown & David E. M. Sappington, 2016. "On the optimal design of demand response policies," Journal of Regulatory Economics, Springer, vol. 49(3), pages 265-291, June.
    3. Brown, David P. & Sappington, David E.M., 2018. "On the role of maximum demand charges in the presence of distributed generation resources," Energy Economics, Elsevier, vol. 69(C), pages 237-249.
    4. Abrardi, Laura & Cambini, Carlo, 2015. "Tariff regulation with energy efficiency goals," Energy Economics, Elsevier, vol. 49(C), pages 122-131.
    5. Boampong, Richard & Brown, David P., 2020. "On the benefits of behind-the-meter rooftop solar and energy storage: The importance of retail rate design," Energy Economics, Elsevier, vol. 86(C).
    6. Ossenbrink, Jan, 2017. "How feed-in remuneration design shapes residential PV prosumer paradigms," Energy Policy, Elsevier, vol. 108(C), pages 239-255.
    7. David P. Brown & David E. M. Sappington, 2022. "Vertical integration and capacity investment in the electricity sector," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 31(1), pages 193-226, February.
    8. Datta, Souvik, 2019. "Decoupling and demand-side management: Evidence from the US electric industry," Energy Policy, Elsevier, vol. 132(C), pages 175-184.
    9. Koumparou, Ioannis & Christoforidis, Georgios C. & Efthymiou, Venizelos & Papagiannis, Grigoris K. & Georghiou, George E., 2017. "Configuring residential PV net-metering policies – A focus on the Mediterranean region," Renewable Energy, Elsevier, vol. 113(C), pages 795-812.
    10. Brown, David & Sappington, David, 2014. "On the Optimal Design of Distributed Generation Policies: Is Net Metering Ever Optimal?," Working Papers 2014-12, University of Alberta, Department of Economics.
    11. Fikru, Mahelet G., 2019. "Estimated electricity bill savings for residential solar photovoltaic system owners: Are they accurate enough?," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    12. Laura Abrardi & Carlo Cambini, 2014. "Tariff Regulation with Energy Efficiency Goals," IEFE Working Papers 65, IEFE, Center for Research on Energy and Environmental Economics and Policy, Universita' Bocconi, Milano, Italy.
    13. Michelfelder, Richard A. & Ahern, Pauline & D'Ascendis, Dylan, 2019. "Decoupling impact and public utility conservation investment," Energy Policy, Elsevier, vol. 130(C), pages 311-319.
    14. Kubli, Merla, 2018. "Squaring the sunny circle? On balancing distributive justice of power grid costs and incentives for solar prosumers," Energy Policy, Elsevier, vol. 114(C), pages 173-188.
    15. Hindriks, Jean & Serse, Valerio, 2022. "The incidence of VAT reforms in electricity markets: Evidence from Belgium," International Journal of Industrial Organization, Elsevier, vol. 80(C).
    16. Li, Yumin, 2018. "Incentive pass-through in the California Solar Initiative – An analysis based on third-party contracts," Energy Policy, Elsevier, vol. 121(C), pages 534-541.
    17. Brown, David P. & Muehlenbachs, Lucija, 2023. "The Value of Electricity Reliability: Evidence from Battery Adoption," Working Papers 2023-5, University of Alberta, Department of Economics, revised 26 Jul 2024.
    18. Fais, Birgit & Blesl, Markus & Fahl, Ulrich & Voß, Alfred, 2014. "Comparing different support schemes for renewable electricity in the scope of an energy systems analysis," Applied Energy, Elsevier, vol. 131(C), pages 479-489.
    19. Massimo Filippini & Bettina Hirl & Giuliano Masiero, 2015. "Rational habits in residential electricity demand," IdEP Economic Papers 1506, USI Università della Svizzera italiana.
    20. Ahmed S. Alahmed & Lang Tong, 2022. "Integrating Distributed Energy Resources: Optimal Prosumer Decisions and Impacts of Net Metering Tariffs," Papers 2204.06115, arXiv.org, revised May 2022.

    More about this item

    Keywords

    electricity pricing; distributed generation; regulation;
    All these keywords.

    JEL classification:

    • D47 - Microeconomics - - Market Structure, Pricing, and Design - - - Market Design
    • L50 - Industrial Organization - - Regulation and Industrial Policy - - - General
    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities
    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ris:albaec:2016_001. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joseph Marchand (email available below). General contact details of provider: https://edirc.repec.org/data/deualca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.