IDEAS home Printed from https://ideas.repec.org/a/kap/qmktec/v4y2006i2p173-206.html
   My bibliography  Save this article

Closed-form Bayesian inferences for the logit model via polynomial expansions

Author

Listed:
  • Steven Miller
  • Eric Bradlow
  • Kevin Dayaratna

Abstract

Articles in Marketing and choice literatures have demonstrated the need for incorporating person-level heterogeneity into behavioral models (e.g., logit models for multiple binary outcomes as studied here). However, the logit likelihood extended with a population distribution of heterogeneity doesn’t yield closed-form inferences, and therefore numerical integration techniques are relied upon (e.g., MCMC methods). We present here an alternative, closed-form Bayesian inferences for the logit model, which we obtain by approximating the logit likelihood via a polynomial expansion, and then positing a distribution of heterogeneity from a flexible family that is now conjugate and integrable. For problems where the response coefficients are independent, choosing the Gamma distribution leads to rapidly convergent closed-form expansions; if there are correlations among the coefficients one can still obtain rapidly convergent closed-form expansions by positing a distribution of heterogeneity from a Multivariate Gamma distribution. The solution then comes from the moment generating function of the Multivariate Gamma distribution or in general from the multivariate heterogeneity distribution assumed. Closed-form Bayesian inferences, derivatives (useful for elasticity calculations), population distribution parameter estimates (useful for summarization) and starting values (useful for complicated algorithms) are hence directly available. Two simulation studies demonstrate the efficacy of our approach. Copyright Springer Science + Business Media, LLC 2006

Suggested Citation

  • Steven Miller & Eric Bradlow & Kevin Dayaratna, 2006. "Closed-form Bayesian inferences for the logit model via polynomial expansions," Quantitative Marketing and Economics (QME), Springer, vol. 4(2), pages 173-206, June.
  • Handle: RePEc:kap:qmktec:v:4:y:2006:i:2:p:173-206
    DOI: 10.1007/s11129-006-8129-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11129-006-8129-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11129-006-8129-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eric T. Anderson & Duncan I. Simester, 2001. "Are Sale Signs Less Effective When More Products Have Them?," Marketing Science, INFORMS, vol. 20(2), pages 121-142, March.
    2. Rebecca Allen, 2015. "Education Policy," National Institute Economic Review, National Institute of Economic and Social Research, vol. 231(1), pages 36-43, February.
    3. Michel Bierlaire & Tsippy Lotan & Philippe Toint, 1997. "On The Overspecification of Multinomial and Nested Logit Models Due to Alternative Specific Constants," Transportation Science, INFORMS, vol. 31(4), pages 363-371, November.
    4. David Revelt & Kenneth Train, 1998. "Mixed Logit With Repeated Choices: Households' Choices Of Appliance Efficiency Level," The Review of Economics and Statistics, MIT Press, vol. 80(4), pages 647-657, November.
    5. Barry L. Bayus, 1992. "Brand Loyalty and Marketing Strategy: An Application to Home Appliances," Marketing Science, INFORMS, vol. 11(1), pages 21-38.
    6. Hausman, Jerry & McFadden, Daniel, 1984. "Specification Tests for the Multinomial Logit Model," Econometrica, Econometric Society, vol. 52(5), pages 1219-1240, September.
    7. McCulloch, Robert & Rossi, Peter E., 1994. "An exact likelihood analysis of the multinomial probit model," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 207-240.
    8. Donald G. Morrison & David C. Schmittlein, 1981. "Predicting Future Random Events Based on Past Performance," Management Science, INFORMS, vol. 27(9), pages 1006-1023, September.
    9. Daniel McFadden & Kenneth Train, 2000. "Mixed MNL models for discrete response," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(5), pages 447-470.
    10. McDonald, James B. & Butler, Richard J., 1990. "Regression models for positive random variables," Journal of Econometrics, Elsevier, vol. 43(1-2), pages 227-251.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kevin Dayaratna & Jesse Crosson & Chandler Hubbard, 2022. "Closed Form Bayesian Inferences for Binary Logistic Regression with Applications to American Voter Turnout," Stats, MDPI, vol. 5(4), pages 1-21, November.
    2. Roland T. Rust & Ming-Hui Huang, 2014. "The Service Revolution and the Transformation of Marketing Science," Marketing Science, INFORMS, vol. 33(2), pages 206-221, March.
    3. Prasad Naik & Michel Wedel & Lynd Bacon & Anand Bodapati & Eric Bradlow & Wagner Kamakura & Jeffrey Kreulen & Peter Lenk & David Madigan & Alan Montgomery, 2008. "Challenges and opportunities in high-dimensional choice data analyses," Marketing Letters, Springer, vol. 19(3), pages 201-213, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paleti, Rajesh, 2018. "Generalized multinomial probit Model: Accommodating constrained random parameters," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 248-262.
    2. Daniel A. Brent & Lata Gangadharan & Anke D. Leroux & Paul A. Raschky, 2022. "Reducing bias in preference elicitation for environmental public goods," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(2), pages 280-308, April.
    3. Daziano, Ricardo A. & Achtnicht, Martin, 2014. "Accounting for uncertainty in willingness to pay for environmental benefits," Energy Economics, Elsevier, vol. 44(C), pages 166-177.
    4. Keane, Michael P. & Wasi, Nada, 2016. "How to model consumer heterogeneity? Lessons from three case studies on SP and RP data," Research in Economics, Elsevier, vol. 70(2), pages 197-231.
    5. Revelt, David & Train, Kenneth, 2000. "Customer-Specific Taste Parameters and Mixed Logit: Households' Choice of Electricity Supplier," Department of Economics, Working Paper Series qt1900p96t, Department of Economics, Institute for Business and Economic Research, UC Berkeley.
    6. Veronesi, Marcella & Chawla, Fabienne & Maurer, Max & Lienert, Judit, 2014. "Climate change and the willingness to pay to reduce ecological and health risks from wastewater flooding in urban centers and the environment," Ecological Economics, Elsevier, vol. 98(C), pages 1-10.
    7. Kalkbrenner, Bernhard J. & Yonezawa, Koichi & Roosen, Jutta, 2017. "Consumer preferences for electricity tariffs: Does proximity matter?," Energy Policy, Elsevier, vol. 107(C), pages 413-424.
    8. Kalkbrenner, Bernhard J., 2019. "Residential vs. community battery storage systems – Consumer preferences in Germany," Energy Policy, Elsevier, vol. 129(C), pages 1355-1363.
    9. Haghani, Milad & Bliemer, Michiel C.J. & Hensher, David A., 2021. "The landscape of econometric discrete choice modelling research," Journal of choice modelling, Elsevier, vol. 40(C).
    10. Iain Pardoe & Dean K. Simonton, 2008. "Applying discrete choice models to predict Academy Award winners," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(2), pages 375-394, April.
    11. Daniel A. Brent & Lata Gangadharan & Allison Lassiter & Anke Leroux & Paul A. Raschky, 2016. "Valuing Environmental Services Provided by LocalStormwater Management," Monash Economics Working Papers 35-16, Monash University, Department of Economics.
    12. Francisco Javier Amador & Rosa Marina González & Juan de Dios Ortúzar, 2004. "Preference heterogeneity and willingness to pay for travel time," Documentos de trabajo conjunto ULL-ULPGC 2004-12, Facultad de Ciencias Económicas de la ULPGC.
    13. Qi Feng & J. George Shanthikumar & Mengying Xue, 2022. "Consumer Choice Models and Estimation: A Review and Extension," Production and Operations Management, Production and Operations Management Society, vol. 31(2), pages 847-867, February.
    14. Hoyos Ramos, David, 2010. "Using discrete choice experiments for environmental valuation," BILTOKI 1134-8984, Universidad del País Vasco - Departamento de Economía Aplicada III (Econometría y Estadística).
    15. Mavra Stithou & Stephen Hynes & Nick Hanley & Danny Campbell, 2012. "Estimating the Value of Achieving “Good Ecological Status”in the Boyne River Catchmentin Ireland Using Choice Experiments," The Economic and Social Review, Economic and Social Studies, vol. 43(3), pages 397-422.
    16. Ortega, David L. & Wang, H. Holly & Wu, Laping & Hong, Soo Jeong, 2015. "Retail channel and consumer demand for food quality in China," China Economic Review, Elsevier, vol. 36(C), pages 359-366.
    17. Pereira, Pedro & Ribeiro, Tiago, 2011. "The impact on broadband access to the Internet of the dual ownership of telephone and cable networks," International Journal of Industrial Organization, Elsevier, vol. 29(2), pages 283-293, March.
    18. Fosgerau, Mogens & Bierlaire, Michel, 2007. "A practical test for the choice of mixing distribution in discrete choice models," Transportation Research Part B: Methodological, Elsevier, vol. 41(7), pages 784-794, August.
    19. Atallah, Shadi S. & Huang, Ju-Chin & Leahy, Jessica & Bennett, Karen, 2020. "Preference Heterogeneity and Neighborhood Effect in Invasive Species Control: The Case of Glossy Buckthorn in New Hampshire and Maine Forests," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304623, Agricultural and Applied Economics Association.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:qmktec:v:4:y:2006:i:2:p:173-206. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.