IDEAS home Printed from https://ideas.repec.org/a/kap/qmktec/v20y2022i2d10.1007_s11129-022-09250-9.html
   My bibliography  Save this article

A sequential choice model for multiple discrete demand

Author

Listed:
  • Sanghak Lee

    (Arizona State University)

  • Sunghoon Kim

    (Rutgers University)

  • Sungho Park

    (Seoul National University)

Abstract

Consumer demand in a marketplace is often characterized to be multiple discrete in that discrete units of multiple products are chosen together. This paper develops a sequential choice model for such demand and its estimation technique. Given an inherently high-dimensional problem to solve, a consumer is assumed to simplify it to a sequence of one-unit choices, which eventually leads to a shopping basket of multiple discreteness. Our model and its estimation method are flexible enough to be extended to various contexts such as complementary demand, non-linear pricing, and multiple constraints. The sequential choice process generally finds an optimal solution of a convex problem (e.g., maximizing a concave utility function over a convex feasible set), while it might result in a sub-optimal solution for a non-convex problem. Therefore, in case of a convex optimization problem, the proposed model can be viewed as an econometrician’s means for establishing the optimality of observed demand, offering a practical estimation algorithm for discrete optimization models of consumer demand. We demonstrate the strengths of our model in a variety of simulation studies and an empirical application to consumer panel data of yogurt purchase.

Suggested Citation

  • Sanghak Lee & Sunghoon Kim & Sungho Park, 2022. "A sequential choice model for multiple discrete demand," Quantitative Marketing and Economics (QME), Springer, vol. 20(2), pages 141-178, June.
  • Handle: RePEc:kap:qmktec:v:20:y:2022:i:2:d:10.1007_s11129-022-09250-9
    DOI: 10.1007/s11129-022-09250-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11129-022-09250-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11129-022-09250-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Herbert A. Simon, 1955. "A Behavioral Model of Rational Choice," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 69(1), pages 99-118.
    2. Daniel J. Phaneuf & Catherine L. Kling & Joseph A. Herriges, 2000. "Estimation and Welfare Calculations in a Generalized Corner Solution Model with an Application to Recreation Demand," The Review of Economics and Statistics, MIT Press, vol. 82(1), pages 83-92, February.
    3. van der Lans, Ralf, 2018. "A simultaneous model of multiple-discrete choices of variety and quantity," International Journal of Research in Marketing, Elsevier, vol. 35(2), pages 242-257.
    4. John R. Howell & Sanghak Lee & Greg M. Allenby, 2016. "Price Promotions in Choice Models," Marketing Science, INFORMS, vol. 35(2), pages 319-334, March.
    5. Igal Hendel, 1999. "Estimating Multiple-Discrete Choice Models: An Application to Computerization Returns," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 66(2), pages 423-446.
    6. Sanghak Lee & Greg M. Allenby, 2014. "Modeling Indivisible Demand," Marketing Science, INFORMS, vol. 33(3), pages 364-381, May.
    7. Daniel Kahneman, 2003. "Maps of Bounded Rationality: Psychology for Behavioral Economics," American Economic Review, American Economic Association, vol. 93(5), pages 1449-1475, December.
    8. Bettman, James R & Luce, Mary Frances & Payne, John W, 1998. "Constructive Consumer Choice Processes," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 25(3), pages 187-217, December.
    9. Greg M. Allenby & Thomas S. Shively & Sha Yang & Mark J. Garratt, 2004. "A Choice Model for Packaged Goods: Dealing with Discrete Quantities and Quantity Discounts," Marketing Science, INFORMS, vol. 23(1), pages 95-108, June.
    10. Bhat, Chandra R. & Castro, Marisol & Pinjari, Abdul Rawoof, 2015. "Allowing for complementarity and rich substitution patterns in multiple discrete–continuous models," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 59-77.
    11. William R. Dillon & Sunil Gupta, 1996. "A Segment-Level Model of Category Volume and Brand Choice," Marketing Science, INFORMS, vol. 15(1), pages 38-59.
    12. Takuya Satomura & Jaehwan Kim & Greg M. Allenby, 2011. "Multiple-Constraint Choice Models with Corner and Interior Solutions," Marketing Science, INFORMS, vol. 30(3), pages 481-490, 05-06.
    13. Sanghak Lee & Jaehwan Kim & Greg M. Allenby, 2013. "A Direct Utility Model for Asymmetric Complements," Marketing Science, INFORMS, vol. 32(3), pages 454-470, May.
    14. Castro, Marisol & Bhat, Chandra R. & Pendyala, Ram M. & Jara-Díaz, Sergio R., 2012. "Accommodating multiple constraints in the multiple discrete–continuous extreme value (MDCEV) choice model," Transportation Research Part B: Methodological, Elsevier, vol. 46(6), pages 729-743.
    15. Bhat, Chandra R., 2008. "The multiple discrete-continuous extreme value (MDCEV) model: Role of utility function parameters, identification considerations, and model extensions," Transportation Research Part B: Methodological, Elsevier, vol. 42(3), pages 274-303, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tran, Hung & Mai, Tien, 2024. "Network-based representations and dynamic discrete choice models for multiple discrete choice analysis," Transportation Research Part B: Methodological, Elsevier, vol. 184(C).
    2. Hung Tran & Tien Mai, 2023. "Network-based Representations and Dynamic Discrete Choice Models for Multiple Discrete Choice Analysis," Papers 2306.04606, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tran, Hung & Mai, Tien, 2024. "Network-based representations and dynamic discrete choice models for multiple discrete choice analysis," Transportation Research Part B: Methodological, Elsevier, vol. 184(C).
    2. Kim, Chul & Smith, Adam N. & Kim, Jaehwan & Allenby, Greg M., 2023. "Outside good utility and substitution patterns in direct utility models," Journal of choice modelling, Elsevier, vol. 49(C).
    3. Pinjari, Abdul Rawoof & Bhat, Chandra, 2021. "Computationally efficient forecasting procedures for Kuhn-Tucker consumer demand model systems: Application to residential energy consumption analysis," Journal of choice modelling, Elsevier, vol. 39(C).
    4. Hung Tran & Tien Mai, 2023. "Network-based Representations and Dynamic Discrete Choice Models for Multiple Discrete Choice Analysis," Papers 2306.04606, arXiv.org.
    5. Kim, Youngju & Hardt, Nino & Kim, Jaehwan & Allenby, Greg M., 2022. "Conjunctive screening in models of multiple discreteness," International Journal of Research in Marketing, Elsevier, vol. 39(4), pages 1209-1234.
    6. Jean-Pierre H. Dubé, 2018. "Microeconometric Models of Consumer Demand," NBER Working Papers 25215, National Bureau of Economic Research, Inc.
    7. Kuriyama, Koichi & Shoji, Yasushi & Tsuge, Takahiro, 2020. "The value of leisure time of weekends and long holidays: The multiple discrete–continuous extreme value (MDCEV) choice model with triple constraints," Journal of choice modelling, Elsevier, vol. 37(C).
    8. Saxena, Shobhit & Pinjari, Abdul Rawoof & Paleti, Rajesh, 2022. "A multiple discrete-continuous extreme value model with ordered preferences (MDCEV-OP): Modelling framework for episode-level activity participation and time-use analysis," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 259-283.
    9. Mondal, Aupal & Bhat, Chandra R., 2021. "A new closed form multiple discrete-continuous extreme value (MDCEV) choice model with multiple linear constraints," Transportation Research Part B: Methodological, Elsevier, vol. 147(C), pages 42-66.
    10. Bonnet, Céline & Richards, Timothy J., 2016. "Models of Consumer Demand for Differentiated Products," TSE Working Papers 16-741, Toulouse School of Economics (TSE).
    11. Pellegrini, Andrea & Pinjari, Abdul Rawoof & Maggi, Rico, 2021. "A multiple discrete continuous model of time use that accommodates non-additively separable utility functions along with time and monetary budget constraints," Transportation Research Part A: Policy and Practice, Elsevier, vol. 144(C), pages 37-53.
    12. Sikder, Sujan & Pinjari, Abdul Rawoof, 2013. "The benefits of allowing heteroscedastic stochastic distributions in multiple discrete-continuous choice models," Journal of choice modelling, Elsevier, vol. 9(C), pages 39-56.
    13. Kuriyama, Koichi & Shoji, Yasushi & Tsuge, Takahiro, 2024. "The integer programing extreme value (IPEV) model: An application for estimation of the leisure trip demand," Transportation Research Part B: Methodological, Elsevier, vol. 186(C).
    14. Sanghak Lee & Greg M. Allenby, 2014. "Modeling Indivisible Demand," Marketing Science, INFORMS, vol. 33(3), pages 364-381, May.
    15. Castro, Marisol & Bhat, Chandra R. & Pendyala, Ram M. & Jara-Díaz, Sergio R., 2012. "Accommodating multiple constraints in the multiple discrete–continuous extreme value (MDCEV) choice model," Transportation Research Part B: Methodological, Elsevier, vol. 46(6), pages 729-743.
    16. John R. Howell & Sanghak Lee & Greg M. Allenby, 2016. "Price Promotions in Choice Models," Marketing Science, INFORMS, vol. 35(2), pages 319-334, March.
    17. Kidokoro, Yukihiro, 2016. "A micro foundation for discrete choice models with multiple categories of goods," Journal of choice modelling, Elsevier, vol. 19(C), pages 54-72.
    18. Chandra R. Bhat & Subodh K. Dubey & Mohammad Jobair Bin Alam & Waleed H. Khushefati, 2015. "A New Spatial Multiple Discrete-Continuous Modeling Approach To Land Use Change Analysis," Journal of Regional Science, Wiley Blackwell, vol. 55(5), pages 801-841, November.
    19. Astroza, Sebastian & Pinjari, Abdul & Bhat, Chandra & Jara-Diaz, Sergio, 2017. "A Microeconomic Theory–Based Latent Class Multiple Discrete–Continuous Choice Model of Time Use and Goods Consumption," MPRA Paper 92574, University Library of Munich, Germany.
    20. Dong Soo Kim & Roger A. Bailey & Nino Hardt & Greg M. Allenby, 2017. "Benefit-Based Conjoint Analysis," Marketing Science, INFORMS, vol. 36(1), pages 54-69, January.

    More about this item

    Keywords

    Multiple discreteness; Sequential choice; Discrete optimization;
    All these keywords.

    JEL classification:

    • C35 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • D12 - Microeconomics - - Household Behavior - - - Consumer Economics: Empirical Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:qmktec:v:20:y:2022:i:2:d:10.1007_s11129-022-09250-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.