IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v186y2024ics0191261524001425.html
   My bibliography  Save this article

The integer programing extreme value (IPEV) model: An application for estimation of the leisure trip demand

Author

Listed:
  • Kuriyama, Koichi
  • Shoji, Yasushi
  • Tsuge, Takahiro

Abstract

We developed an integer programing extreme value (IPEV) model that accounts the integer property of trip data and has the same advantages as the multiple discrete–continuous extreme value choice (MDCEV) model. The proposed model is consistent with utility theory and provides a single structural framework for simultaneously modeling the choice of alternatives and quantity decisions with the constraint of the integer value of consumption. We demonstrate that the proposed model has a closed-form probability expression. Finally, we apply the proposed model to the recreation demand for national parks in Japan. The empirical results suggest that the proposed model provides a better fit for the data than the previous model and that ignoring the integer property of demand might cause an underestimation of the welfare loss.

Suggested Citation

  • Kuriyama, Koichi & Shoji, Yasushi & Tsuge, Takahiro, 2024. "The integer programing extreme value (IPEV) model: An application for estimation of the leisure trip demand," Transportation Research Part B: Methodological, Elsevier, vol. 186(C).
  • Handle: RePEc:eee:transb:v:186:y:2024:i:c:s0191261524001425
    DOI: 10.1016/j.trb.2024.103018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261524001425
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2024.103018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daniel J. Phaneuf & Catherine L. Kling & Joseph A. Herriges, 2000. "Estimation and Welfare Calculations in a Generalized Corner Solution Model with an Application to Recreation Demand," The Review of Economics and Statistics, MIT Press, vol. 82(1), pages 83-92, February.
    2. Cameron,A. Colin & Trivedi,Pravin K., 2013. "Regression Analysis of Count Data," Cambridge Books, Cambridge University Press, number 9781107667273, January.
    3. Joseph A. Herriges & Catherine L. Kling & Daniel J. Phaneuf, 1999. "Corner Solution Models of Recreation Demand: A Comparison of Competing Frameworks," Chapters, in: Joseph A. Herriges & Catherine L. Kling (ed.), Valuing Recreation and the Environment, chapter 6, pages 163-198, Edward Elgar Publishing.
    4. Wales, T. J. & Woodland, A. D., 1983. "Estimation of consumer demand systems with binding non-negativity constraints," Journal of Econometrics, Elsevier, vol. 21(3), pages 263-285, April.
    5. von Haefen R.H. & Phaneuf D.J. & Parsons G.R., 2004. "Estimation and Welfare Analysis With Large Demand Systems," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 194-205, April.
    6. Kuriyama, Koichi & Shoji, Yasushi & Tsuge, Takahiro, 2020. "The value of leisure time of weekends and long holidays: The multiple discrete–continuous extreme value (MDCEV) choice model with triple constraints," Journal of choice modelling, Elsevier, vol. 37(C).
    7. Pinjari, Abdul Rawoof & Bhat, Chandra, 2021. "Computationally efficient forecasting procedures for Kuhn-Tucker consumer demand model systems: Application to residential energy consumption analysis," Journal of choice modelling, Elsevier, vol. 39(C).
    8. Lloyd-Smith, Patrick, 2018. "A new approach to calculating welfare measures in Kuhn-Tucker demand models," Journal of choice modelling, Elsevier, vol. 26(C), pages 19-27.
    9. von Haefen, Roger H., 2007. "Empirical strategies for incorporating weak complementarity into consumer demand models," Journal of Environmental Economics and Management, Elsevier, vol. 54(1), pages 15-31, July.
    10. Bhat, Chandra R., 2022. "A closed-form multiple discrete-count extreme value (MDCNTEV) model," Transportation Research Part B: Methodological, Elsevier, vol. 164(C), pages 65-86.
    11. Daniel Hellerstein & Robert Mendelsohn, 1993. "A Theoretical Foundation for Count Data Models," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 75(3), pages 604-611.
    12. Sikder, Sujan & Pinjari, Abdul Rawoof, 2013. "The benefits of allowing heteroscedastic stochastic distributions in multiple discrete-continuous choice models," Journal of choice modelling, Elsevier, vol. 9(C), pages 39-56.
    13. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521747387, November.
    14. Frank J. Cesario, 1976. "Value of Time in Recreation Benefit Studies," Land Economics, University of Wisconsin Press, vol. 52(1), pages 32-41.
    15. Bhat, Chandra R., 2008. "The multiple discrete-continuous extreme value (MDCEV) model: Role of utility function parameters, identification considerations, and model extensions," Transportation Research Part B: Methodological, Elsevier, vol. 42(3), pages 274-303, March.
    16. Bhat, Chandra R., 2005. "A multiple discrete-continuous extreme value model: formulation and application to discretionary time-use decisions," Transportation Research Part B: Methodological, Elsevier, vol. 39(8), pages 679-707, September.
    17. Hausman, Jerry A. & Leonard, Gregory K. & McFadden, Daniel, 1995. "A utility-consistent, combined discrete choice and count data model Assessing recreational use losses due to natural resource damage," Journal of Public Economics, Elsevier, vol. 56(1), pages 1-30, January.
    18. Sanghak Lee & Greg M. Allenby, 2014. "Modeling Indivisible Demand," Marketing Science, INFORMS, vol. 33(3), pages 364-381, May.
    19. Kuriyama, Koichi & Michael Hanemann, W. & Hilger, James R., 2010. "A latent segmentation approach to a Kuhn-Tucker model: An application to recreation demand," Journal of Environmental Economics and Management, Elsevier, vol. 60(3), pages 209-220, November.
    20. Castro, Marisol & Bhat, Chandra R. & Pendyala, Ram M. & Jara-Díaz, Sergio R., 2012. "Accommodating multiple constraints in the multiple discrete–continuous extreme value (MDCEV) choice model," Transportation Research Part B: Methodological, Elsevier, vol. 46(6), pages 729-743.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kuriyama, Koichi & Shoji, Yasushi & Tsuge, Takahiro, 2020. "The value of leisure time of weekends and long holidays: The multiple discrete–continuous extreme value (MDCEV) choice model with triple constraints," Journal of choice modelling, Elsevier, vol. 37(C).
    2. Hanemann, Michael & Labandeira, Xavier & Labeaga, José M. & Vásquez-Lavín, Felipe, 2024. "Discrete-continuous models of residential energy demand: A comprehensive review," Resource and Energy Economics, Elsevier, vol. 77(C).
    3. Pinjari, Abdul Rawoof & Bhat, Chandra, 2021. "Computationally efficient forecasting procedures for Kuhn-Tucker consumer demand model systems: Application to residential energy consumption analysis," Journal of choice modelling, Elsevier, vol. 39(C).
    4. Kuriyama, Koichi & Michael Hanemann, W. & Hilger, James R., 2010. "A latent segmentation approach to a Kuhn-Tucker model: An application to recreation demand," Journal of Environmental Economics and Management, Elsevier, vol. 60(3), pages 209-220, November.
    5. Sikder, Sujan & Pinjari, Abdul Rawoof, 2013. "The benefits of allowing heteroscedastic stochastic distributions in multiple discrete-continuous choice models," Journal of choice modelling, Elsevier, vol. 9(C), pages 39-56.
    6. Kim, Chul & Smith, Adam N. & Kim, Jaehwan & Allenby, Greg M., 2023. "Outside good utility and substitution patterns in direct utility models," Journal of choice modelling, Elsevier, vol. 49(C).
    7. Vasquez Lavin, Felipe & Hanemann, W. Michael, 2008. "Functional Forms in Discrete/Continuous Choice Models With General Corner Solution," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt7z25t659, Department of Agricultural & Resource Economics, UC Berkeley.
    8. Hung Tran & Tien Mai, 2023. "Network-based Representations and Dynamic Discrete Choice Models for Multiple Discrete Choice Analysis," Papers 2306.04606, arXiv.org.
    9. Carson, Richard T. & Eagle, Thomas C. & Islam, Towhidul & Louviere, Jordan J., 2022. "Volumetric choice experiments (VCEs)," Journal of choice modelling, Elsevier, vol. 42(C).
    10. Tran, Hung & Mai, Tien, 2024. "Network-based representations and dynamic discrete choice models for multiple discrete choice analysis," Transportation Research Part B: Methodological, Elsevier, vol. 184(C).
    11. Phaneuf, Daniel J. & Smith, V. Kerry, 2006. "Recreation Demand Models," Handbook of Environmental Economics, in: K. G. Mäler & J. R. Vincent (ed.), Handbook of Environmental Economics, edition 1, volume 2, chapter 15, pages 671-761, Elsevier.
    12. Jara-Díaz, Sergio & Rosales-Salas, Jorge, 2017. "Beyond transport time: A review of time use modeling," Transportation Research Part A: Policy and Practice, Elsevier, vol. 97(C), pages 209-230.
    13. Sánchez, José J. & Baerenklau, Ken & González-Cabán, Armando, 2016. "Valuing hypothetical wildfire impacts with a Kuhn–Tucker model of recreation demand," Forest Policy and Economics, Elsevier, vol. 71(C), pages 63-70.
    14. Bhat, Chandra R., 2008. "The multiple discrete-continuous extreme value (MDCEV) model: Role of utility function parameters, identification considerations, and model extensions," Transportation Research Part B: Methodological, Elsevier, vol. 42(3), pages 274-303, March.
    15. Chandra R. Bhat & Subodh K. Dubey & Mohammad Jobair Bin Alam & Waleed H. Khushefati, 2015. "A New Spatial Multiple Discrete-Continuous Modeling Approach To Land Use Change Analysis," Journal of Regional Science, Wiley Blackwell, vol. 55(5), pages 801-841, November.
    16. Bhat, Chandra R. & Mondal, Aupal & Asmussen, Katherine E. & Bhat, Aarti C., 2020. "A multiple discrete extreme value choice model with grouped consumption data and unobserved budgets," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 196-222.
    17. Chandra Bhat & Abdul Pinjari, 2014. "Multiple discrete-continuous choice models: a reflective analysis and a prospective view," Chapters, in: Stephane Hess & Andrew Daly (ed.), Handbook of Choice Modelling, chapter 19, pages 427-454, Edward Elgar Publishing.
    18. Gosens, Tom & Rouwendal, Jan, 2018. "Nature-based outdoor recreation trips: Duration, travel mode and location," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 513-530.
    19. Sobhani, Anae & Eluru, Naveen & Faghih-Imani, Ahmadreza, 2013. "A latent segmentation based multiple discrete continuous extreme value model," Transportation Research Part B: Methodological, Elsevier, vol. 58(C), pages 154-169.
    20. Tatsuo Suwa, 2008. "Estimation of the spatial substitution effect of national park trip demand: an application of the Kuhn-Tucker model," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 9(4), pages 239-257, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:186:y:2024:i:c:s0191261524001425. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.