IDEAS home Printed from https://ideas.repec.org/a/kap/netspa/v6y2006i3p235-251.html
   My bibliography  Save this article

Improving Airline Network Robustness and Operational Reliability by Sequential Optimisation Algorithms

Author

Listed:
  • Cheng-Lung Wu

Abstract

A sequential optimisation algorithm is developed to improve the operational reliability of airline schedules. Simulation results show that departure delays are reduced by 30% after optimisation by using extra 260 min buffer times in the schedule. This also increases the network-wide schedule reliability from 37 to 52% and an estimated delay cost saving of $20 million dollars per annum for a small airline network. The advantage of sequential optimisation is that it considers the delay/punctuality propagation in airline networks, so to prevent airlines from planning excessive buffer times to individual flights by considering aircraft rotation as a whole process. Copyright Springer Science + Business Media, LLC 2006

Suggested Citation

  • Cheng-Lung Wu, 2006. "Improving Airline Network Robustness and Operational Reliability by Sequential Optimisation Algorithms," Networks and Spatial Economics, Springer, vol. 6(3), pages 235-251, September.
  • Handle: RePEc:kap:netspa:v:6:y:2006:i:3:p:235-251
    DOI: 10.1007/s11067-006-9282-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11067-006-9282-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11067-006-9282-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Songjun Luo & Gang Yu, 1997. "On the Airline Schedule Perturbation Problem Caused by the Ground Delay Program," Transportation Science, INFORMS, vol. 31(4), pages 298-311, November.
    2. Brian Rexing & Cynthia Barnhart & Tim Kniker & Ahmad Jarrah & Nirup Krishnamurthy, 2000. "Airline Fleet Assignment with Time Windows," Transportation Science, INFORMS, vol. 34(1), pages 1-20, February.
    3. Yan, Shangyao & Young, Hwei-Fwa, 1996. "A decision support framework for multi-fleet routing and multi-stop flight scheduling," Transportation Research Part A: Policy and Practice, Elsevier, vol. 30(5), pages 379-398, September.
    4. Wu, Cheng-Lung, 2005. "Inherent delays and operational reliability of airline schedules," Journal of Air Transport Management, Elsevier, vol. 11(4), pages 273-282.
    5. Cynthia Barnhart & Natashia L. Boland & Lloyd W. Clarke & Ellis L. Johnson & George L. Nemhauser & Rajesh G. Shenoi, 1998. "Flight String Models for Aircraft Fleeting and Routing," Transportation Science, INFORMS, vol. 32(3), pages 208-220, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michelle Dunbar & Gary Froyland & Cheng-Lung Wu, 2012. "Robust Airline Schedule Planning: Minimizing Propagated Delay in an Integrated Routing and Crewing Framework," Transportation Science, INFORMS, vol. 46(2), pages 204-216, May.
    2. Mazhar Arıkan & Vinayak Deshpande & Milind Sohoni, 2013. "Building Reliable Air-Travel Infrastructure Using Empirical Data and Stochastic Models of Airline Networks," Operations Research, INFORMS, vol. 61(1), pages 45-64, February.
    3. Bai, Bingfeng, 2022. "Strategic business management for airport alliance: A complex network approach to simulation robustness analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    4. Yimga, Jules & Gorjidooz, Javad, 2019. "Airline schedule padding and consumer choice behavior," Journal of Air Transport Management, Elsevier, vol. 78(C), pages 71-79.
    5. Wu, Cheng-Lung & Law, Kristie, 2019. "Modelling the delay propagation effects of multiple resource connections in an airline network using a Bayesian network model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 62-77.
    6. Schultz, Michael & Evler, Jan & Asadi, Ehsan & Preis, Henning & Fricke, Hartmut & Wu, Cheng-Lung, 2020. "Future aircraft turnaround operations considering post-pandemic requirements," Journal of Air Transport Management, Elsevier, vol. 89(C).
    7. Thi-Phuong Nguyen, 2022. "Evaluation of network reliability for stochastic-flow air transportation network considering discounted fares from airlines," Annals of Operations Research, Springer, vol. 311(1), pages 335-355, April.
    8. van Schilt, Isabelle M. & van Kalker, Jonna & Lefter, Iulia & Kwakkel, Jan H. & Verbraeck, Alexander, 2024. "Buffer scheduling for improving on-time performance and connectivity with a multi-objective simulation–optimization model: A proof of concept for the airline industry," Journal of Air Transport Management, Elsevier, vol. 115(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hanif D. Sherali & Ebru K. Bish & Xiaomei Zhu, 2005. "Polyhedral Analysis and Algorithms for a Demand-Driven Refleeting Model for Aircraft Assignment," Transportation Science, INFORMS, vol. 39(3), pages 349-366, August.
    2. Shan Lan & John-Paul Clarke & Cynthia Barnhart, 2006. "Planning for Robust Airline Operations: Optimizing Aircraft Routings and Flight Departure Times to Minimize Passenger Disruptions," Transportation Science, INFORMS, vol. 40(1), pages 15-28, February.
    3. Michelle Dunbar & Gary Froyland & Cheng-Lung Wu, 2012. "Robust Airline Schedule Planning: Minimizing Propagated Delay in an Integrated Routing and Crewing Framework," Transportation Science, INFORMS, vol. 46(2), pages 204-216, May.
    4. Sherali, Hanif D. & Bish, Ebru K. & Zhu, Xiaomei, 2006. "Airline fleet assignment concepts, models, and algorithms," European Journal of Operational Research, Elsevier, vol. 172(1), pages 1-30, July.
    5. Belanger, Nicolas & Desaulniers, Guy & Soumis, Francois & Desrosiers, Jacques, 2006. "Periodic airline fleet assignment with time windows, spacing constraints, and time dependent revenues," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1754-1766, December.
    6. Stephen J. Maher, 2016. "Solving the Integrated Airline Recovery Problem Using Column-and-Row Generation," Transportation Science, INFORMS, vol. 50(1), pages 216-239, February.
    7. Xu, Yifan & Adler, Nicole & Wandelt, Sebastian & Sun, Xiaoqian, 2024. "Competitive integrated airline schedule design and fleet assignment," European Journal of Operational Research, Elsevier, vol. 314(1), pages 32-50.
    8. Jay M. Rosenberger & Ellis L. Johnson & George L. Nemhauser, 2003. "Rerouting Aircraft for Airline Recovery," Transportation Science, INFORMS, vol. 37(4), pages 408-421, November.
    9. Bard, Jonathan F. & Mohan, Dinesh Natarajan, 2008. "Reallocating arrival slots during a ground delay program," Transportation Research Part B: Methodological, Elsevier, vol. 42(2), pages 113-134, February.
    10. Hai Jiang & Cynthia Barnhart, 2009. "Dynamic Airline Scheduling," Transportation Science, INFORMS, vol. 43(3), pages 336-354, August.
    11. Cynthia Barnhart & Timothy S. Kniker & Manoj Lohatepanont, 2002. "Itinerary-Based Airline Fleet Assignment," Transportation Science, INFORMS, vol. 36(2), pages 199-217, May.
    12. Cynthia Barnhart & Peter Belobaba & Amedeo R. Odoni, 2003. "Applications of Operations Research in the Air Transport Industry," Transportation Science, INFORMS, vol. 37(4), pages 368-391, November.
    13. Cynthia Barnhart & Amr Farahat & Manoj Lohatepanont, 2009. "Airline Fleet Assignment with Enhanced Revenue Modeling," Operations Research, INFORMS, vol. 57(1), pages 231-244, February.
    14. Balachandran Vaidyanathan & Ravindra K. Ahuja & James B. Orlin, 2008. "The Locomotive Routing Problem," Transportation Science, INFORMS, vol. 42(4), pages 492-507, November.
    15. Antunes, António P. & Santos, Miguel G. & Pita, João P. & Menezes, António G., 2018. "Study on the evolution of the air transport network of the Azores," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 837-851.
    16. Okan Örsan Özener & Melda Örmeci Matoğlu & Güneş Erdoğan & Mohamed Haouari & Hasan Sözer, 2017. "Solving a large-scale integrated fleet assignment and crew pairing problem," Annals of Operations Research, Springer, vol. 253(1), pages 477-500, June.
    17. Hanif Sherali & Ki-Hwan Bae & Mohamed Haouari, 2013. "A benders decomposition approach for an integrated airline schedule design and fleet assignment problem with flight retiming, schedule balance, and demand recapture," Annals of Operations Research, Springer, vol. 210(1), pages 213-244, November.
    18. Oktay Günlük & Tracy Kimbrel & Laszlo Ladanyi & Baruch Schieber & Gregory B. Sorkin, 2006. "Vehicle Routing and Staffing for Sedan Service," Transportation Science, INFORMS, vol. 40(3), pages 313-326, August.
    19. F M Zeghal & M Haouari & H D Sherali & N Aissaoui, 2011. "Flexible aircraft fleeting and routing at TunisAir," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(2), pages 368-380, February.
    20. Haouari, Mohamed & Aissaoui, Najla & Mansour, Farah Zeghal, 2009. "Network flow-based approaches for integrated aircraft fleeting and routing," European Journal of Operational Research, Elsevier, vol. 193(2), pages 591-599, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:netspa:v:6:y:2006:i:3:p:235-251. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.