IDEAS home Printed from https://ideas.repec.org/a/kap/netnom/v16y2015i1p53-85.html
   My bibliography  Save this article

Technoeconomic performance of wireless networks supporting smart mobile devices and services: Evaluation of technology-centric cum marketing performance indicators

Author

Listed:
  • Perambur Neelakanta
  • Aziz Noori

Abstract

The scope of this study is to evolve a rational strategy to prescribe a performance measure on the prevailing mobile services and platforms that support emerging smart devices concurrent to traditional incumbents of feature cell phones. It is a motivated effort to judiciously include the economics-related parameters in conjunction with technology-specific details so as to deduce a cohesive performance metric in order to compare the state-of-the-art mobile services and related operations. In relevantly existing strategies, such performance comparison of mobile services is done purely on the basis of technology-dictated parameters on the speed of wireless traffic (in bps). The so-called PCMag.com assessments prescribe thereof, a mobile speed index (MSI) to determine the performance of mobile networks and identify the ”fastest network” that prevails in a service area. However, while deducing such MSI values, the approach pursued does not include any underlying economics-related facts relevant to service areas and/or periods of assessment. Hence, the present study is done to elucidate a coherently viable, technology-cum-economics based performance metric on mobile services in vogue. A technoeconomic parameter is identified thereof, and it is termed as relative technoeconomic performance index (RTPI); hence, a comprehensive comparison is furnished on the MSI values (of PCMag.com) versus the RTPI values pertinent to set of available data. Concluding remarks on the pros and cons of adopting ‘technology-alone’ details (sans economics parameters) in decision-making on relative performance of mobile services (especially in the contexts of supporting smart- and feature-devices) are presented. Copyright Springer Science+Business Media New York 2015

Suggested Citation

  • Perambur Neelakanta & Aziz Noori, 2015. "Technoeconomic performance of wireless networks supporting smart mobile devices and services: Evaluation of technology-centric cum marketing performance indicators," Netnomics, Springer, vol. 16(1), pages 53-85, August.
  • Handle: RePEc:kap:netnom:v:16:y:2015:i:1:p:53-85
    DOI: 10.1007/s11066-015-9093-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11066-015-9093-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11066-015-9093-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Perambur Neelakanta & Renata Sardenberg, 2011. "Consumer benefit versus price elasticity of demand: a nonlinear complex system model of pricing internet services on QoS-centric architecture," Netnomics, Springer, vol. 12(1), pages 31-60, April.
    2. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Perambur S. Neelakanta & Aziz U. Noori, 2021. "Techno-economic price-worthiness of mobile networks: a hedonic heuristic perspective," Netnomics, Springer, vol. 22(2), pages 85-113, December.
    2. Perambur S. Neelakanta & Aziz U. Noori, 2022. "Techno-economic price-worthiness of mobile networks: a hedonic heuristic perspective," Netnomics, Springer, vol. 22(2), pages 85-113, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    2. Ernesto Carrella & Richard M. Bailey & Jens Koed Madsen, 2018. "Indirect inference through prediction," Papers 1807.01579, arXiv.org.
    3. Rui Wang & Naihua Xiu & Kim-Chuan Toh, 2021. "Subspace quadratic regularization method for group sparse multinomial logistic regression," Computational Optimization and Applications, Springer, vol. 79(3), pages 531-559, July.
    4. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    5. Masakazu Higuchi & Mitsuteru Nakamura & Shuji Shinohara & Yasuhiro Omiya & Takeshi Takano & Daisuke Mizuguchi & Noriaki Sonota & Hiroyuki Toda & Taku Saito & Mirai So & Eiji Takayama & Hiroo Terashi &, 2022. "Detection of Major Depressive Disorder Based on a Combination of Voice Features: An Exploratory Approach," IJERPH, MDPI, vol. 19(18), pages 1-13, September.
    6. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
    7. Vincent, Martin & Hansen, Niels Richard, 2014. "Sparse group lasso and high dimensional multinomial classification," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 771-786.
    8. Chen, Le-Yu & Lee, Sokbae, 2018. "Best subset binary prediction," Journal of Econometrics, Elsevier, vol. 206(1), pages 39-56.
    9. Perrot-Dockès Marie & Lévy-Leduc Céline & Chiquet Julien & Sansonnet Laure & Brégère Margaux & Étienne Marie-Pierre & Robin Stéphane & Genta-Jouve Grégory, 2018. "A variable selection approach in the multivariate linear model: an application to LC-MS metabolomics data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 17(5), pages 1-14, October.
    10. Fan, Jianqing & Jiang, Bai & Sun, Qiang, 2022. "Bayesian factor-adjusted sparse regression," Journal of Econometrics, Elsevier, vol. 230(1), pages 3-19.
    11. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    12. Jun Li & Serguei Netessine & Sergei Koulayev, 2018. "Price to Compete … with Many: How to Identify Price Competition in High-Dimensional Space," Management Science, INFORMS, vol. 64(9), pages 4118-4136, September.
    13. Sung Jae Jun & Sokbae Lee, 2024. "Causal Inference Under Outcome-Based Sampling with Monotonicity Assumptions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(3), pages 998-1009, July.
    14. Rina Friedberg & Julie Tibshirani & Susan Athey & Stefan Wager, 2018. "Local Linear Forests," Papers 1807.11408, arXiv.org, revised Sep 2020.
    15. Xiangwei Li & Thomas Delerue & Ben Schöttker & Bernd Holleczek & Eva Grill & Annette Peters & Melanie Waldenberger & Barbara Thorand & Hermann Brenner, 2022. "Derivation and validation of an epigenetic frailty risk score in population-based cohorts of older adults," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    16. Hewamalage, Hansika & Bergmeir, Christoph & Bandara, Kasun, 2021. "Recurrent Neural Networks for Time Series Forecasting: Current status and future directions," International Journal of Forecasting, Elsevier, vol. 37(1), pages 388-427.
    17. Hui Xiao & Yiguo Sun, 2020. "Forecasting the Returns of Cryptocurrency: A Model Averaging Approach," JRFM, MDPI, vol. 13(11), pages 1-15, November.
    18. Christopher J Greenwood & George J Youssef & Primrose Letcher & Jacqui A Macdonald & Lauryn J Hagg & Ann Sanson & Jenn Mcintosh & Delyse M Hutchinson & John W Toumbourou & Matthew Fuller-Tyszkiewicz &, 2020. "A comparison of penalised regression methods for informing the selection of predictive markers," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-14, November.
    19. Brian Quistorff & Gentry Johnson, 2020. "Machine Learning for Experimental Design: Methods for Improved Blocking," Papers 2010.15966, arXiv.org.
    20. Heng Chen & Daniel F. Heitjan, 2022. "Analysis of local sensitivity to nonignorability with missing outcomes and predictors," Biometrics, The International Biometric Society, vol. 78(4), pages 1342-1352, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:netnom:v:16:y:2015:i:1:p:53-85. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.