IDEAS home Printed from https://ideas.repec.org/a/kap/mktlet/v23y2012i3p505-516.html
   My bibliography  Save this article

Sequential market basket analysis

Author

Listed:
  • Wagner Kamakura

Abstract

Market basket analysis (MBA) is a powerful and common practice in modern retailing that has some limitations stemming from the fact that it infers purchase sequence from joint-purchasing data. However, internet retailers automatically collect purchase-sequence data from their shoppers, and new technology is available for traditional (bricks and mortar) retailers to do the same, making it possible to analyze purchase sequences, rather than inferring them from joint purchases. This study first compares and contrasts traditional market basket analysis with a sequential extension, and then proposes a framework for purchase-sequence analysis, which is illustrated utilizing shopping trip data from one grocery store. Copyright Springer Science+Business Media, LLC 2012

Suggested Citation

  • Wagner Kamakura, 2012. "Sequential market basket analysis," Marketing Letters, Springer, vol. 23(3), pages 505-516, September.
  • Handle: RePEc:kap:mktlet:v:23:y:2012:i:3:p:505-516
    DOI: 10.1007/s11002-012-9181-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11002-012-9181-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11002-012-9181-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. P. Seetharaman & Siddhartha Chib & Andrew Ainslie & Peter Boatwright & Tat Chan & Sachin Gupta & Nitin Mehta & Vithala Rao & Andrei Strijnev, 2005. "Models of Multi-Category Choice Behavior," Marketing Letters, Springer, vol. 16(3), pages 239-254, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thomas Reutterer & Kurt Hornik & Nicolas March & Kathrin Gruber, 2017. "A data mining framework for targeted category promotions," Journal of Business Economics, Springer, vol. 87(3), pages 337-358, April.
    2. Martin, James & Nenycz-Thiel, Magda & Dawes, John & Tanusondjaja, Arry & Cohen, Justin & McColl, Bruce & Trinh, Giang, 2020. "Fundamental basket size patterns and their relation to retailer performance," Journal of Retailing and Consumer Services, Elsevier, vol. 54(C).
    3. Evanschitzky, Heiner & Malhotra, Neeru & Wangenheim, Florian v. & Lemon, Katherine N., 2017. "Antecedents of peripheral services cross-buying behavior," Journal of Retailing and Consumer Services, Elsevier, vol. 36(C), pages 218-224.
    4. Sorensen, Herb & Bogomolova, Svetlana & Anderson, Katherine & Trinh, Giang & Sharp, Anne & Kennedy, Rachel & Page, Bill & Wright, Malcolm, 2017. "Fundamental patterns of in-store shopper behavior," Journal of Retailing and Consumer Services, Elsevier, vol. 37(C), pages 182-194.
    5. Creed, Bernard & Ning Shen, Kathy & Ashill, Nick & Wu, Tianshi, 2021. "Retail shopping at airports: Making travellers buy again," Journal of Business Research, Elsevier, vol. 137(C), pages 293-307.
    6. Fernando, Angeline Gautami & Aw, Eugene Cheng-Xi, 2023. "What do consumers want? A methodological framework to identify determinant product attributes from consumers’ online questions," Journal of Retailing and Consumer Services, Elsevier, vol. 73(C).
    7. Harald Hruschka & Thomas Reutterer, 2017. "Editorial," Journal of Business Economics, Springer, vol. 87(3), pages 291-294, April.
    8. Kim, Hwang & Rao, Vithala R., 2023. "A comparison of online recommendation methods: Simultaneous versus sequential approaches," Journal of Retailing, Elsevier, vol. 99(2), pages 210-227.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sutthipong Meeyai, 2015. "Modeling Store Patronage: A Systematic Review," International Conference on Marketing and Business Development Journal, The Bucharest University of Economic Studies, vol. 1(1), pages 40-48, July.
    2. Nitin Mehta, 2007. "Investigating Consumers' Purchase Incidence and Brand Choice Decisions Across Multiple Product Categories: A Theoretical and Empirical Analysis," Marketing Science, INFORMS, vol. 26(2), pages 196-217, 03-04.
    3. Boztug, Yasemin & Reutterer, Thomas, 2008. "A combined approach for segment-specific market basket analysis," European Journal of Operational Research, Elsevier, vol. 187(1), pages 294-312, May.
    4. Harald Hruschka, 2021. "Comparing unsupervised probabilistic machine learning methods for market basket analysis," Review of Managerial Science, Springer, vol. 15(2), pages 497-527, February.
    5. Raluca M. Ursu & Daria Dzyabura, 2020. "Retailers’ product location problem with consumer search," Quantitative Marketing and Economics (QME), Springer, vol. 18(2), pages 125-154, June.
    6. Pascucci, Federica & Nardi, Lorenzo & Marinelli, Luca & Paolanti, Marina & Frontoni, Emanuele & Gregori, Gian Luca, 2022. "Combining sell-out data with shopper behaviour data for category performance measurement: The role of category conversion power," Journal of Retailing and Consumer Services, Elsevier, vol. 65(C).
    7. Bryan Bollinger & Naim Darghouth & Kenneth Gillingham & Andres Gonzalez-Lira, 2023. "Valuing Technology Complementarities: Rooftop Solar and Energy Storage," NBER Working Papers 32003, National Bureau of Economic Research, Inc.
    8. George, Morris & Kumar, V. & Grewal, Dhruv, 2013. "Maximizing Profits for a Multi-Category Catalog Retailer," Journal of Retailing, Elsevier, vol. 89(4), pages 374-396.
    9. Nguyen Tien Thong & Hans Stubbe Solgaard & Wolfgang Haider & Eva Roth & Lars Ravn†Jonsen, 2018. "Using labeled choice experiments to analyze demand structure and market position among seafood products," Agribusiness, John Wiley & Sons, Ltd., vol. 34(2), pages 163-189, March.
    10. Pancras, Joseph & Gauri, Dinesh K. & Talukdar, Debabrata, 2013. "Loss leaders and cross-category retailer pass-through: A Bayesian multilevel analysis," Journal of Retailing, Elsevier, vol. 89(2), pages 140-157.
    11. Gal Oestreicher-Singer & Arun Sundararajan, 2012. "The Visible Hand? Demand Effects of Recommendation Networks in Electronic Markets," Management Science, INFORMS, vol. 58(11), pages 1963-1981, November.
    12. Youngsoo Kim & Rahul Telang & William B. Vogt & Ramayya Krishnan, 2010. "An Empirical Analysis of Mobile Voice Service and SMS: A Structural Model," Management Science, INFORMS, vol. 56(2), pages 234-252, February.
    13. Vinit Kumar Mishra & Karthik Natarajan & Dhanesh Padmanabhan & Chung-Piaw Teo & Xiaobo Li, 2014. "On Theoretical and Empirical Aspects of Marginal Distribution Choice Models," Management Science, INFORMS, vol. 60(6), pages 1511-1531, June.
    14. S. Sriram & Pradeep K. Chintagunta & Manoj K. Agarwal, 2010. "Investigating Consumer Purchase Behavior in Related Technology Product Categories," Marketing Science, INFORMS, vol. 29(2), pages 291-314, 03-04.
    15. Minha Hwang & Sungho Park, 2016. "The Impact of Walmart Supercenter Conversion on Consumer Shopping Behavior," Management Science, INFORMS, vol. 62(3), pages 817-828, March.
    16. Zhang, Qin & Gangwar, Manish & Seetharaman, P.B., 2017. "Polygamous Store Loyalties: An Empirical Investigation," Journal of Retailing, Elsevier, vol. 93(4), pages 477-492.
    17. Hruschka, Harald, 2016. "Hidden Variable Models for Market Basket Data. Statistical Performance and Managerial Implications," University of Regensburg Working Papers in Business, Economics and Management Information Systems 489, University of Regensburg, Department of Economics.
    18. Pramono, Ari & Oppewal, Harmen, 2021. "Where to refuel: Modeling on-the-way choice of convenience outlet," Journal of Retailing and Consumer Services, Elsevier, vol. 61(C).
    19. Xiaojing Dong & Pradeep Chintagunta & Puneet Manchanda, 2011. "A new multivariate count data model to study multi-category physician prescription behavior," Quantitative Marketing and Economics (QME), Springer, vol. 9(3), pages 301-337, September.
    20. Rakesh Niraj & V. Padmanabhan & P. B. Seetharaman, 2008. "Research Note—A Cross-Category Model of Households' Incidence and Quantity Decisions," Marketing Science, INFORMS, vol. 27(2), pages 225-235, 03-04.

    More about this item

    Keywords

    Market basket analysis; Shopping behavior;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:mktlet:v:23:y:2012:i:3:p:505-516. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.