IDEAS home Printed from https://ideas.repec.org/a/taf/jpropr/v38y2021i1p48-70.html
   My bibliography  Save this article

Predicting property prices with machine learning algorithms

Author

Listed:
  • Winky K.O. Ho
  • Bo-Sin Tang
  • Siu Wai Wong

Abstract

This study uses three machine learning algorithms including, support vector machine (SVM), random forest (RF) and gradient boosting machine (GBM) in the appraisal of property prices. It applies these methods to examine a data sample of about 40,000 housing transactions in a period of over 18 years in Hong Kong, and then compares the results of these algorithms. In terms of predictive power, RF and GBM have achieved better performance when compared to SVM. The three performance metrics including mean squared error (MSE), root mean squared error (RMSE) and mean absolute percentage error (MAPE) associated with these two algorithms also unambiguously outperform those of SVM. However, our study has found that SVM is still a useful algorithm in data fitting because it can produce reasonably accurate predictions within a tight time constraint. Our conclusion is that machine learning offers a promising, alternative technique in property valuation and appraisal research especially in relation to property price prediction.

Suggested Citation

  • Winky K.O. Ho & Bo-Sin Tang & Siu Wai Wong, 2021. "Predicting property prices with machine learning algorithms," Journal of Property Research, Taylor & Francis Journals, vol. 38(1), pages 48-70, January.
  • Handle: RePEc:taf:jpropr:v:38:y:2021:i:1:p:48-70
    DOI: 10.1080/09599916.2020.1832558
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/09599916.2020.1832558
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/09599916.2020.1832558?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. João A. Bastos & Jeanne Paquette, 2024. "On the uncertainty of real estate price predictions," Working Papers REM 2024/0314, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
    2. Juergen Deppner & Marcelo Cajias, 2024. "Accounting for Spatial Autocorrelation in Algorithm-Driven Hedonic Models: A Spatial Cross-Validation Approach," The Journal of Real Estate Finance and Economics, Springer, vol. 68(2), pages 235-273, February.
    3. Mostofi Fatemeh & Toğan Vedat & Başağa Hasan Basri, 2022. "Real-estate price prediction with deep neural network and principal component analysis," Organization, Technology and Management in Construction, Sciendo, vol. 14(1), pages 2741-2759, January.
    4. Hoang, Daniel & Wiegratz, Kevin, 2022. "Machine learning methods in finance: Recent applications and prospects," Working Paper Series in Economics 158, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
    5. Jungsun Kim & Jaewoong Won & Hyeongsoon Kim & Joonghyeok Heo, 2021. "Machine-Learning-Based Prediction of Land Prices in Seoul, South Korea," Sustainability, MDPI, vol. 13(23), pages 1-14, November.
    6. Aoife K. Hurley & James Sweeney, 2024. "Irish Property Price Estimation Using A Flexible Geo-spatial Smoothing Approach: What is the Impact of an Address?," The Journal of Real Estate Finance and Economics, Springer, vol. 68(3), pages 355-393, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jpropr:v:38:y:2021:i:1:p:48-70. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RJPR20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.