IDEAS home Printed from https://ideas.repec.org/a/kap/jproda/v42y2014i2p211-223.html
   My bibliography  Save this article

Efficiency measurement when producers control pollutants: a non-parametric approach

Author

Listed:
  • Kenneth Rødseth

Abstract

This paper treats efficiency measurement when some outputs are undesirable and producers control pollutants by end-of-pipe or change-in-process abatement. A data envelopment analysis framework that compares producers with similar pollution control efforts is proposed. First, my approach avoids arbitrary disposability assumptions for undesirable outputs. Second, the model is used to evaluate the interplay between pollution control activities and technical efficiency. I compare my approach to the traditional neo-classical production model that does not incorporate undesirable outputs among outputs, and to Färe et al.’s (Rev Econ Stat 71:90–98, 1989 , J Econom 126:469–492, 2005 ) well-known model that incorporates bads. I evaluate the common assumption in the literature on polluting technologies, that inputs are allocatable to pollution control, and apply U.S. electricity data to illustrate my main point: Although my empirical model specifications are in line with the literature on polluting technologies, they rely on inputs that play an insignificant role in controlling nitrogen oxides (NO x ) emissions. Consequentially, there are no reasons to expect the efficiency scores of the traditional model to differ from the efficiency scores of the other two models that account for resources employed to pollution control. Statistical tests show that my model, which explicitly takes pollution control efforts into account, produces efficiency scores that are not statistically different from the traditional model’s scores for all model specifications, while Färe et al.’s model produces significantly different results for some model specifications. I conclude that the popular production models that incorporate undesirable outputs may not be applicable to all cases involving polluting production and that more emphasis on appropriate empirical specifications is needed. Copyright Springer Science+Business Media New York 2014

Suggested Citation

  • Kenneth Rødseth, 2014. "Efficiency measurement when producers control pollutants: a non-parametric approach," Journal of Productivity Analysis, Springer, vol. 42(2), pages 211-223, October.
  • Handle: RePEc:kap:jproda:v:42:y:2014:i:2:p:211-223
    DOI: 10.1007/s11123-014-0382-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11123-014-0382-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11123-014-0382-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brännlund, Runar & Lundgren, Tommy, 2009. "Environmental policy without costs? A review of the Porter hypothesis," Umeå Economic Studies 766, Umeå University, Department of Economics.
    2. Karen Palmer & Wallace E. Oates & Paul R. Portney & Karen Palmer & Wallace E. Oates & Paul R. Portney, 2004. "Tightening Environmental Standards: The Benefit-Cost or the No-Cost Paradigm?," Chapters, in: Environmental Policy and Fiscal Federalism, chapter 3, pages 53-66, Edward Elgar Publishing.
    3. Brännlund, Runar & Lundgren, Tommy, 2009. "Environmental policy without costs? A review of the Porter hypothesis," Sustainable Investment and Corporate Governance Working Papers 2009/1, Sustainable Investment Research Platform.
    4. Rolf Färe & Shawna Grosskopf & Gerald Whittaker, 2014. "Network DEA II," International Series in Operations Research & Management Science, in: Wade D. Cook & Joe Zhu (ed.), Data Envelopment Analysis, edition 127, chapter 0, pages 307-327, Springer.
    5. Timo Kuosmanen, 2005. "Weak Disposability in Nonparametric Production Analysis with Undesirable Outputs," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 87(4), pages 1077-1082.
    6. Murty, Sushama, 2010. "Externalities and fundamental nonconvexities: A reconciliation of approaches to general equilibrium externality modeling and implications for decentralization," Journal of Economic Theory, Elsevier, vol. 145(1), pages 331-353, January.
    7. Murty, Sushama & Russell, R. Robert, 2010. "On modeling pollution-generating technologies," The Warwick Economics Research Paper Series (TWERPS) 931, University of Warwick, Department of Economics.
    8. Welch, Eric & Barnum, Darold, 2009. "Joint environmental and cost efficiency analysis of electricity generation," Ecological Economics, Elsevier, vol. 68(8-9), pages 2336-2343, June.
    9. Fare, Rolf & Grosskopf, Shawna & Noh, Dong-Woon & Weber, William, 2005. "Characteristics of a polluting technology: theory and practice," Journal of Econometrics, Elsevier, vol. 126(2), pages 469-492, June.
    10. T Kuosmanen, 2009. "Data envelopment analysis with missing data," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(12), pages 1767-1774, December.
    11. Virginia D. McConnell & Robert M. Schwab, 1990. "The Impact of Environmental Regulation on Industry Location Decisions: The Motor Vehicle Industry," Land Economics, University of Wisconsin Press, vol. 66(1), pages 67-81.
    12. Brannlund, Runar & Lundgren, Tommy, 2009. "Environmental Policy Without Costs? A Review of the Porter Hypothesis," International Review of Environmental and Resource Economics, now publishers, vol. 3(2), pages 75-117, September.
    13. Rolf Färe & Shawna Grosskopf, 2003. "Nonparametric Productivity Analysis with Undesirable Outputs: Comment," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 85(4), pages 1070-1074.
    14. Shadbegian, Ronald J. & Gray, Wayne B., 2005. "Pollution abatement expenditures and plant-level productivity: A production function approach," Ecological Economics, Elsevier, vol. 54(2-3), pages 196-208, August.
    15. Pethig, Rudiger, 2006. "Non-linear production, abatement, pollution and materials balance reconsidered," Journal of Environmental Economics and Management, Elsevier, vol. 51(2), pages 185-204, March.
    16. Ray, Subhash C., 1988. "Data envelopment analysis, nondiscretionary inputs and efficiency: an alternative interpretation," Socio-Economic Planning Sciences, Elsevier, vol. 22(4), pages 167-176.
    17. Adam B. Jaffe et al., 1995. "Environmental Regulation and the Competitiveness of U.S. Manufacturing: What Does the Evidence Tell Us?," Journal of Economic Literature, American Economic Association, vol. 33(1), pages 132-163, March.
    18. Runar Brännlund & Rolf Färe & Shawna Grosskopf, 1995. "Environmental regulation and profitability: An application to Swedish pulp and paper mills," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 6(1), pages 23-36, July.
    19. Rolf Färe & Shawna Grosskopf & Carl A Pasurka, Jr., 2001. "Accounting for Air Pollution Emissions in Measures of State Manufacturing Productivity Growth," Journal of Regional Science, Wiley Blackwell, vol. 41(3), pages 381-409, August.
    20. Lauwers, Ludwig, 2009. "Justifying the incorporation of the materials balance principle into frontier-based eco-efficiency models," Ecological Economics, Elsevier, vol. 68(6), pages 1605-1614, April.
    21. Yajie Liu & U. Rashid Sumaila, 2010. "Estimating Pollution Abatement Costs of Salmon Aquaculture: A Joint Production Approach," Land Economics, University of Wisconsin Press, vol. 86(3).
    22. Reig-Martinez, Ernest & Picazo-Tadeo, Andres & Hernandez-Sancho, Francesc, 2001. "The calculation of shadow prices for industrial wastes using distance functions: An analysis for Spanish ceramic pavements firms," International Journal of Production Economics, Elsevier, vol. 69(3), pages 277-285, February.
    23. Fare, Rolf, et al, 1989. "Multilateral Productivity Comparisons When Some Outputs Are Undesirable: A Nonparametric Approach," The Review of Economics and Statistics, MIT Press, vol. 71(1), pages 90-98, February.
    24. Atakelty Hailu & Terrence S. Veeman, 2001. "Non-parametric Productivity Analysis with Undesirable Outputs: An Application to the Canadian Pulp and Paper Industry," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 83(3), pages 605-616.
    25. Barbera, Anthony J. & McConnell, Virginia D., 1990. "The impact of environmental regulations on industry productivity: Direct and indirect effects," Journal of Environmental Economics and Management, Elsevier, vol. 18(1), pages 50-65, January.
    26. Baumgartner, Stefan & Dyckhoff, Harald & Faber, Malte & Proops, John & Schiller, Johannes, 2001. "The concept of joint production and ecological economics," Ecological Economics, Elsevier, vol. 36(3), pages 365-372, March.
    27. Simar, Leopold & Wilson, Paul W., 2007. "Estimation and inference in two-stage, semi-parametric models of production processes," Journal of Econometrics, Elsevier, vol. 136(1), pages 31-64, January.
    28. Ruggiero, John, 1996. "On the measurement of technical efficiency in the public sector," European Journal of Operational Research, Elsevier, vol. 90(3), pages 553-565, May.
    29. Christopher O’Donnell & D. Rao & George Battese, 2008. "Metafrontier frameworks for the study of firm-level efficiencies and technology ratios," Empirical Economics, Springer, vol. 34(2), pages 231-255, March.
    30. Pasurka, Carl Jr., 2006. "Decomposing electric power plant emissions within a joint production framework," Energy Economics, Elsevier, vol. 28(1), pages 26-43, January.
    31. Tim Coelli & Ludwig Lauwers & Guido Huylenbroeck, 2007. "Environmental efficiency measurement and the materials balance condition," Journal of Productivity Analysis, Springer, vol. 28(1), pages 3-12, October.
    32. Ball, E. & Fare, R. & Grosskopf, S. & Zaim, O., 2005. "Accounting for externalities in the measurement of productivity growth: the Malmquist cost productivity measure," Structural Change and Economic Dynamics, Elsevier, vol. 16(3), pages 374-394, September.
    33. Murty, Sushama & Robert Russell, R. & Levkoff, Steven B., 2012. "On modeling pollution-generating technologies," Journal of Environmental Economics and Management, Elsevier, vol. 64(1), pages 117-135.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Harald Dyckhoff & Rainer Souren, 2023. "Are important phenomena of joint production still being neglected by economic theory? A review of recent literature," Journal of Business Economics, Springer, vol. 93(6), pages 1015-1053, August.
    2. Harald Dyckhoff, 2023. "Proper modelling of industrial production systems with unintended outputs: a different perspective," Journal of Productivity Analysis, Springer, vol. 59(2), pages 173-188, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kenneth Løvold Rødseth, 2017. "Environmental regulations and allocative efficiency: application to coal-to-gas substitution in the U.S. electricity sector," Journal of Productivity Analysis, Springer, vol. 47(2), pages 129-142, April.
    2. Jeanneaux, Philippe & Latruffe, Laure, 2016. "Modelling pollution-generating technologies in performance benchmarking: Recent developments, limits and future prospects in the nonparametric frameworkAuthor-Name: Dakpo, K. Hervé," European Journal of Operational Research, Elsevier, vol. 250(2), pages 347-359.
    3. Kenneth Rødseth & Eirik Romstad, 2014. "Environmental Regulations, Producer Responses, and Secondary Benefits: Carbon Dioxide Reductions Under the Acid Rain Program," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 59(1), pages 111-135, September.
    4. Rødseth, Kenneth Løvold, 2013. "Capturing the least costly way of reducing pollution: A shadow price approach," Ecological Economics, Elsevier, vol. 92(C), pages 16-24.
    5. Hampf, Benjamin & Rødseth, Kenneth Løvold, 2019. "Environmental efficiency measurement with heterogeneous input quality: A nonparametric analysis of U.S. power plants," Energy Economics, Elsevier, vol. 81(C), pages 610-625.
    6. Aparicio, Juan & Kapelko, Magdalena & Zofío, José L., 2020. "The measurement of environmental economic inefficiency with pollution-generating technologies," Resource and Energy Economics, Elsevier, vol. 62(C).
    7. Behrouz Arabi & Susila Munisamy Doraisamy & Ali Emrouznejad & Alireza Khoshroo, 2017. "Eco-efficiency measurement and material balance principle: an application in power plants Malmquist Luenberger Index," Annals of Operations Research, Springer, vol. 255(1), pages 221-239, August.
    8. Abad, Arnaud & Briec, Walter, 2019. "On the axiomatic of pollution-generating technologies: Non-parametric production analysis," European Journal of Operational Research, Elsevier, vol. 277(1), pages 377-390.
    9. Leleu, Hervé, 2013. "Shadow pricing of undesirable outputs in nonparametric analysis," European Journal of Operational Research, Elsevier, vol. 231(2), pages 474-480.
    10. Dakpo, K & Jeanneaux, Philippe & Latruffee, Laure, 2015. "Empirical comparison of pollution generating technologies in nonparametric modelling: The case of greenhouse gas emissions in French sheep meat farming," 2015 Conference, August 9-14, 2015, Milan, Italy 211557, International Association of Agricultural Economists.
    11. Andreas Eder, 2022. "Environmental efficiency measurement when producers control pollutants under heterogeneous conditions: a generalization of the materials balance approach," Journal of Productivity Analysis, Springer, vol. 57(2), pages 157-176, April.
    12. Andreas Eder, 2021. "Environmental efficiency measurement when producers control pollutants under heterogeneous conditions: a generalization of the materials balance approach," Working Papers 752021, University of Natural Resources and Life Sciences, Vienna, Department of Economics and Social Sciences, Institute for Sustainable Economic Development.
    13. Kenneth Løvold Rødseth, 2017. "Axioms of a Polluting Technology: A Materials Balance Approach," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(1), pages 1-22, May.
    14. repec:zbw:inwedp:752021 is not listed on IDEAS
    15. Hampf, Benjamin & Rødseth, Kenneth Løvold, 2015. "Carbon dioxide emission standards for U.S. power plants: An efficiency analysis perspective," Energy Economics, Elsevier, vol. 50(C), pages 140-153.
    16. Cherchye, Laurens & Rock, Bram De & Walheer, Barnabé, 2015. "Multi-output efficiency with good and bad outputs," European Journal of Operational Research, Elsevier, vol. 240(3), pages 872-881.
    17. Dakpo, K Hervé, 2016. "On modeling pollution-generating technologies: a new formulation of the by-production approach," Working Papers 245191, Institut National de la recherche Agronomique (INRA), Departement Sciences Sociales, Agriculture et Alimentation, Espace et Environnement (SAE2).
    18. Dakpo, Hervé K & Jeanneaux, Philippe & Latruffe, Laure, 2014. "Inclusion of undesirable outputs in production technology modeling: The case of greenhouse gas emissions in French meat sheep farming," Working Papers 207806, Institut National de la recherche Agronomique (INRA), Departement Sciences Sociales, Agriculture et Alimentation, Espace et Environnement (SAE2).
    19. Ke Wang & Zhifu Mi & Yi‐Ming Wei, 2019. "Will Pollution Taxes Improve Joint Ecological and Economic Efficiency of Thermal Power Industry in China?: A DEA‐Based Materials Balance Approach," Journal of Industrial Ecology, Yale University, vol. 23(2), pages 389-401, April.
    20. Stefan Ambec & Mark A. Cohen & Stewart Elgie & Paul Lanoie, 2013. "The Porter Hypothesis at 20: Can Environmental Regulation Enhance Innovation and Competitiveness?," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 7(1), pages 2-22, January.
    21. K Hervé Dakpo, 2016. "On modeling pollution-generating technologies: a new formulation of the by-production approach," Working Papers SMART 16-06, INRAE UMR SMART.

    More about this item

    Keywords

    Data envelopment analysis; Directional output distance function; Pollution control; Allocatable inputs; Weak disposability axiom; D24; Q52; C61;
    All these keywords.

    JEL classification:

    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity
    • Q52 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Pollution Control Adoption and Costs; Distributional Effects; Employment Effects
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:jproda:v:42:y:2014:i:2:p:211-223. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.