IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v255y2017i1d10.1007_s10479-015-1970-x.html
   My bibliography  Save this article

Eco-efficiency measurement and material balance principle: an application in power plants Malmquist Luenberger Index

Author

Listed:
  • Behrouz Arabi

    (University of Malaya)

  • Susila Munisamy Doraisamy

    (University of Malaya)

  • Ali Emrouznejad

    (Aston University)

  • Alireza Khoshroo

    (Yasouj University)

Abstract

Incorporating Material Balance Principle (MBP) in industrial and agricultural performance measurement systems with pollutant factors has been on the rise in recent years. Many conventional methods of performance measurement have proven incompatible with the material flow conditions. This study will address the issue of eco-efficiency measurement adjusted for pollution, taking into account materials flow conditions and the MBP requirements, in order to provide ‘real’ measures of performance that can serve as guides when making policies. We develop a new approach by integrating slacks-based measure to enhance the Malmquist Luenberger Index by a material balance condition that reflects the conservation of matter. This model is compared with a similar model, which incorporates MBP using the trade-off approach to measure productivity and eco-efficiency trends of power plants. Results reveal similar findings for both models substantiating robustness and applicability of the proposed model in this paper.

Suggested Citation

  • Behrouz Arabi & Susila Munisamy Doraisamy & Ali Emrouznejad & Alireza Khoshroo, 2017. "Eco-efficiency measurement and material balance principle: an application in power plants Malmquist Luenberger Index," Annals of Operations Research, Springer, vol. 255(1), pages 221-239, August.
  • Handle: RePEc:spr:annopr:v:255:y:2017:i:1:d:10.1007_s10479-015-1970-x
    DOI: 10.1007/s10479-015-1970-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-015-1970-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-015-1970-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Murty, Sushama & Russell, R. Robert, 2010. "On modeling pollution-generating technologies," Economic Research Papers 271176, University of Warwick - Department of Economics.
    2. V V Podinovski, 2004. "Production trade-offs and weight restrictions in data envelopment analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(12), pages 1311-1322, December.
    3. Zhou, Guanghui & Chung, William & Zhang, Xiliang, 2013. "A study of carbon dioxide emissions performance of China's transport sector," Energy, Elsevier, vol. 50(C), pages 302-314.
    4. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    5. Arabi, Behrouz & Munisamy, Susila & Emrouznejad, Ali, 2015. "A new slacks-based measure of Malmquist–Luenberger index in the presence of undesirable outputs," Omega, Elsevier, vol. 51(C), pages 29-37.
    6. Baumgartner, Stefan & Dyckhoff, Harald & Faber, Malte & Proops, John & Schiller, Johannes, 2001. "The concept of joint production and ecological economics," Ecological Economics, Elsevier, vol. 36(3), pages 365-372, March.
    7. Noor Ramli & Susila Munisamy & Behrouz Arabi, 2013. "Scale directional distance function and its application to the measurement of eco-efficiency in the manufacturing sector," Annals of Operations Research, Springer, vol. 211(1), pages 381-398, December.
    8. Tim Coelli & Ludwig Lauwers & Guido Huylenbroeck, 2007. "Environmental efficiency measurement and the materials balance condition," Journal of Productivity Analysis, Springer, vol. 28(1), pages 3-12, October.
    9. Chih-Ching Yang, 2014. "An enhanced DEA model for decomposition of technical efficiency in banking," Annals of Operations Research, Springer, vol. 214(1), pages 167-185, March.
    10. Pethig, Rudiger, 2006. "Non-linear production, abatement, pollution and materials balance reconsidered," Journal of Environmental Economics and Management, Elsevier, vol. 51(2), pages 185-204, March.
    11. Kuosmanen, Natalia & Kuosmanen, Timo, 2013. "Modeling Cumulative Effects of Nutrient Surpluses in Agriculture: A Dynamic Approach to Material Balance Accounting," Ecological Economics, Elsevier, vol. 90(C), pages 159-167.
    12. Lauwers, Ludwig, 2009. "Justifying the incorporation of the materials balance principle into frontier-based eco-efficiency models," Ecological Economics, Elsevier, vol. 68(6), pages 1605-1614, April.
    13. Fare, Rolf, et al, 1989. "Multilateral Productivity Comparisons When Some Outputs Are Undesirable: A Nonparametric Approach," The Review of Economics and Statistics, MIT Press, vol. 71(1), pages 90-98, February.
    14. Wei, Yi-Ming & Liao, Hua & Fan, Ying, 2007. "An empirical analysis of energy efficiency in China's iron and steel sector," Energy, Elsevier, vol. 32(12), pages 2262-2270.
    15. repec:bla:scandj:v:94:y:1992:i:0:p:s211-28 is not listed on IDEAS
    16. W. Briec, 1997. "A Graph-Type Extension of Farrell Technical Efficiency Measure," Journal of Productivity Analysis, Springer, vol. 8(1), pages 95-110, March.
    17. Burnett, Royce D. & Hansen, Don R., 2008. "Ecoefficiency: Defining a role for environmental cost management," Accounting, Organizations and Society, Elsevier, vol. 33(6), pages 551-581, August.
    18. Murty, Sushama & Robert Russell, R. & Levkoff, Steven B., 2012. "On modeling pollution-generating technologies," Journal of Environmental Economics and Management, Elsevier, vol. 64(1), pages 117-135.
    19. Welch, Eric & Barnum, Darold, 2009. "Joint environmental and cost efficiency analysis of electricity generation," Ecological Economics, Elsevier, vol. 68(8-9), pages 2336-2343, June.
    20. Färe, Rolf & Grosskopf, Shawna & Pasurka, Carl A., 2007. "Environmental production functions and environmental directional distance functions," Energy, Elsevier, vol. 32(7), pages 1055-1066.
    21. Xiaodan Huang & Dasha Hu & Zhixiang Zhou, 2013. "Measuring efficiency in Chinese commercial banks using a DEA model with undesirable output," International Journal of Information and Decision Sciences, Inderscience Enterprises Ltd, vol. 5(2), pages 140-153.
    22. Reinhard, Stijn & Knox Lovell, C. A. & Thijssen, Geert J., 2000. "Environmental efficiency with multiple environmentally detrimental variables; estimated with SFA and DEA," European Journal of Operational Research, Elsevier, vol. 121(2), pages 287-303, March.
    23. Murat Bilsel & Nurhan Davutyan, 2014. "Hospital efficiency with risk adjusted mortality as undesirable output: the Turkish case," Annals of Operations Research, Springer, vol. 221(1), pages 73-88, October.
    24. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    25. Färe, Rolf & Grosskopf, Shawna, 2010. "Directional distance functions and slacks-based measures of efficiency," European Journal of Operational Research, Elsevier, vol. 200(1), pages 320-322, January.
    26. Ali Emrouznejad, 2014. "Advances in data envelopment analysis," Annals of Operations Research, Springer, vol. 214(1), pages 1-4, March.
    27. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    28. Färe, Rolf & Grosskopf, Shawna, 2010. "Directional distance functions and slacks-based measures of efficiency: Some clarifications," European Journal of Operational Research, Elsevier, vol. 206(3), pages 702-702, November.
    29. Fare, Rolf & Grosskopf, Shawna & Tyteca, Daniel, 1996. "An activity analysis model of the environmental performance of firms--application to fossil-fuel-fired electric utilities," Ecological Economics, Elsevier, vol. 18(2), pages 161-175, August.
    30. Arabi, Behrouz & Munisamy, Susila & Emrouznejad, Ali & Shadman, Foroogh, 2014. "Power industry restructuring and eco-efficiency changes: A new slacks-based model in Malmquist–Luenberger Index measurement," Energy Policy, Elsevier, vol. 68(C), pages 132-145.
    31. Trung Thanh Nguyen & Viet-Ngu Hoang & Bumsuk Seo, 2012. "Cost and environmental efficiency of rice farms in South Korea," Agricultural Economics, International Association of Agricultural Economists, vol. 43(4), pages 369-378, July.
    32. Emrouznejad, Ali & Parker, Barnett R. & Tavares, Gabriel, 2008. "Evaluation of research in efficiency and productivity: A survey and analysis of the first 30 years of scholarly literature in DEA," Socio-Economic Planning Sciences, Elsevier, vol. 42(3), pages 151-157, September.
    33. Picazo-Tadeo, Andres J. & Reig-Martinez, Ernest & Hernandez-Sancho, Francesc, 2005. "Directional distance functions and environmental regulation," Resource and Energy Economics, Elsevier, vol. 27(2), pages 131-142, June.
    34. Ayres, Robert U & Kneese, Allen V, 1969. "Production , Consumption, and Externalities," American Economic Review, American Economic Association, vol. 59(3), pages 282-297, June.
    35. Khoshroo, Alireza & Mulwa, Richard & Emrouznejad, Ali & Arabi, Behrouz, 2013. "A non-parametric Data Envelopment Analysis approach for improving energy efficiency of grape production," Energy, Elsevier, vol. 63(C), pages 189-194.
    36. Korhonen, Pekka J. & Luptacik, Mikulas, 2004. "Eco-efficiency analysis of power plants: An extension of data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 154(2), pages 437-446, April.
    37. Utlu, Zafer & Kincay, Olcay, 2013. "An assessment of a pulp and paper mill through energy and exergy analyses," Energy, Elsevier, vol. 57(C), pages 565-573.
    38. Zhou, Peng & Poh, Kim Leng & Ang, Beng Wah, 2007. "A non-radial DEA approach to measuring environmental performance," European Journal of Operational Research, Elsevier, vol. 178(1), pages 1-9, April.
    39. Fare, Rolf & Grosskopf, Shawna & Noh, Dong-Woon & Weber, William, 2005. "Characteristics of a polluting technology: theory and practice," Journal of Econometrics, Elsevier, vol. 126(2), pages 469-492, June.
    40. Daniel Tyteca, 1997. "Linear Programming Models for the Measurement of Environmental Performance of Firms—Concepts and Empirical Results," Journal of Productivity Analysis, Springer, vol. 8(2), pages 183-197, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fumin Deng & Yanan Jin & Meng Ye & Shuangyi Zheng, 2019. "New Fixed Assets Investment Project Environmental Performance and Influencing Factors—An Empirical Analysis in China’s Optics Valley," IJERPH, MDPI, vol. 16(24), pages 1-21, December.
    2. Dakpo, K Hervé & Lansink, Alfons Oude, 2019. "Dynamic pollution-adjusted inefficiency under the by-production of bad outputs," European Journal of Operational Research, Elsevier, vol. 276(1), pages 202-211.
    3. Zelenyuk, Valentin & Zhao, Shirong, 2024. "Russell and slack-based measures of efficiency: A unifying framework," European Journal of Operational Research, Elsevier, vol. 318(3), pages 867-876.
    4. Jie Wu & Panpan Xia & Qingyuan Zhu & Junfei Chu, 2019. "Measuring environmental efficiency of thermoelectric power plants: a common equilibrium efficient frontier DEA approach with fixed-sum undesirable output," Annals of Operations Research, Springer, vol. 275(2), pages 731-749, April.
    5. Malte L. Peters & Stephan Zelewski, 2021. "Upper and lower satisficing levels in efficiency analysis: a corporate social responsibility perspective," Sustainability Nexus Forum, Springer, vol. 29(3), pages 187-195, December.
    6. Hampf, Benjamin, 2018. "Cost and environmental efficiency of U.S. electricity generation: Accounting for heterogeneous inputs and transportation costs," Energy, Elsevier, vol. 163(C), pages 932-941.
    7. Bampatsou, Christina & Halkos, George & Beneki, Christina, 2021. "Energy and material flow management to improve EU productivity," Economic Analysis and Policy, Elsevier, vol. 70(C), pages 83-93.
    8. Xiang Ji & Jie Wu & Qingyuan Zhu & Jiasen Sun, 2019. "Using a hybrid heterogeneous DEA method to benchmark China’s sustainable urbanization: an empirical study," Annals of Operations Research, Springer, vol. 278(1), pages 281-335, July.
    9. Gouveia, M.C. & Henriques, C.O. & Dias, L.C., 2023. "Eco-efficiency changes of the electricity and gas sectors across 28 European countries: A value-based data envelopment analysis productivity approach," Socio-Economic Planning Sciences, Elsevier, vol. 87(PB).
    10. Khoshroo, Alireza & Izadikhah, Mohammad & Emrouznejad, Ali, 2022. "Total factor energy productivity considering undesirable pollutant outputs: A new double frontier based malmquist productivity index," Energy, Elsevier, vol. 258(C).
    11. Li, Feng & Zhang, Danlu & Zhang, Jinyu & Kou, Gang, 2022. "Measuring the energy production and utilization efficiency of Chinese thermal power industry with the fixed-sum carbon emission constraint," International Journal of Production Economics, Elsevier, vol. 252(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    2. Arabi, Behrouz & Munisamy, Susila & Emrouznejad, Ali & Toloo, Mehdi & Ghazizadeh, Mohammad Sadegh, 2016. "Eco-efficiency considering the issue of heterogeneity among power plants," Energy, Elsevier, vol. 111(C), pages 722-735.
    3. Arabi, Behrouz & Munisamy, Susila & Emrouznejad, Ali & Shadman, Foroogh, 2014. "Power industry restructuring and eco-efficiency changes: A new slacks-based model in Malmquist–Luenberger Index measurement," Energy Policy, Elsevier, vol. 68(C), pages 132-145.
    4. Zhou, Haibo & Yang, Yi & Chen, Yao & Zhu, Joe, 2018. "Data envelopment analysis application in sustainability: The origins, development and future directions," European Journal of Operational Research, Elsevier, vol. 264(1), pages 1-16.
    5. Arabi, Behrouz & Munisamy, Susila & Emrouznejad, Ali, 2015. "A new slacks-based measure of Malmquist–Luenberger index in the presence of undesirable outputs," Omega, Elsevier, vol. 51(C), pages 29-37.
    6. Aparicio, Juan & Kapelko, Magdalena & Zofío, José L., 2020. "The measurement of environmental economic inefficiency with pollution-generating technologies," Resource and Energy Economics, Elsevier, vol. 62(C).
    7. Hampf, Benjamin, 2018. "Cost and environmental efficiency of U.S. electricity generation: Accounting for heterogeneous inputs and transportation costs," Energy, Elsevier, vol. 163(C), pages 932-941.
    8. Hampf, Benjamin & Rødseth, Kenneth Løvold, 2015. "Carbon dioxide emission standards for U.S. power plants: An efficiency analysis perspective," Energy Economics, Elsevier, vol. 50(C), pages 140-153.
    9. Aldanondo, Ana M. & Casasnovas, Valero L. & Almansa, M. Carmen, 2016. "Cost-constrained measures of environmental efficiency: a material balance approach," MPRA Paper 72490, University Library of Munich, Germany.
    10. Atkinson, Scott E. & Tsionas, Mike G., 2021. "Generalized estimation of productivity with multiple bad outputs: The importance of materials balance constraints," European Journal of Operational Research, Elsevier, vol. 292(3), pages 1165-1186.
    11. Zhou, P. & Ang, B.W. & Poh, K.L., 2008. "A survey of data envelopment analysis in energy and environmental studies," European Journal of Operational Research, Elsevier, vol. 189(1), pages 1-18, August.
    12. Long, Xingle & Wu, Chao & Zhang, Jijian & Zhang, Jing, 2018. "Environmental efficiency for 192 thermal power plants in the Yangtze River Delta considering heterogeneity: A metafrontier directional slacks-based measure approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3962-3971.
    13. Leleu, Hervé, 2013. "Shadow pricing of undesirable outputs in nonparametric analysis," European Journal of Operational Research, Elsevier, vol. 231(2), pages 474-480.
    14. Hampf, Benjamin & Rødseth, Kenneth Løvold, 2019. "Environmental efficiency measurement with heterogeneous input quality: A nonparametric analysis of U.S. power plants," Energy Economics, Elsevier, vol. 81(C), pages 610-625.
    15. Jeanneaux, Philippe & Latruffe, Laure, 2016. "Modelling pollution-generating technologies in performance benchmarking: Recent developments, limits and future prospects in the nonparametric frameworkAuthor-Name: Dakpo, K. Hervé," European Journal of Operational Research, Elsevier, vol. 250(2), pages 347-359.
    16. Abad, Arnaud & Briec, Walter, 2019. "On the axiomatic of pollution-generating technologies: Non-parametric production analysis," European Journal of Operational Research, Elsevier, vol. 277(1), pages 377-390.
    17. Gómez-Calvet, Roberto & Conesa, David & Gómez-Calvet, Ana Rosa & Tortosa-Ausina, Emili, 2014. "Energy efficiency in the European Union: What can be learned from the joint application of directional distance functions and slacks-based measures?," Applied Energy, Elsevier, vol. 132(C), pages 137-154.
    18. Zhang, Bin & Lu, Danting & He, Yan & Chiu, Yung-ho, 2018. "The efficiencies of resource-saving and environment: A case study based on Chinese cities," Energy, Elsevier, vol. 150(C), pages 493-507.
    19. Ke Wang & Zhifu Mi & Yi‐Ming Wei, 2019. "Will Pollution Taxes Improve Joint Ecological and Economic Efficiency of Thermal Power Industry in China?: A DEA‐Based Materials Balance Approach," Journal of Industrial Ecology, Yale University, vol. 23(2), pages 389-401, April.
    20. Kenneth Løvold Rødseth, 2017. "Environmental regulations and allocative efficiency: application to coal-to-gas substitution in the U.S. electricity sector," Journal of Productivity Analysis, Springer, vol. 47(2), pages 129-142, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:255:y:2017:i:1:d:10.1007_s10479-015-1970-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.