IDEAS home Printed from https://ideas.repec.org/a/kap/jproda/v40y2013i3p307-321.html
   My bibliography  Save this article

Estimation and decomposition of inefficiency when producers maximize return to the outlay: an application to Norwegian fishing trawlers

Author

Listed:
  • Subal Kumbhakar
  • Frank Asche
  • Ragnar Tveteras

Abstract

This paper deals with estimation of a production technology where endogeneous choice of input and output variables is explicitly recognized. In particular, we assume that producers maximize return to the outlay (RO). For simplicity and tractability we start with a Cobb–Douglas transformation function with multiple inputs and outputs and show how the first-order conditions of RO maximization can be used to derive an estimating equation which is nothing but a partial input productivity equation. This equation does not suffer from the econometric endogeneity problem although the output and input variables are endogenous. First, we consider the case where producers are fully efficient allocatively but technically inefficient. The model is estimated using a single equation stochastic frontier approach. The model is then extended to allow allocative inefficiency and it is estimated as a system using generalized method of moment. Algebraic expressions are derived to decompose the effect of technical and allocative inefficiencies on RO. We also consider translog specifications that are estimated as (1) a single equation frontier model as well as (2) a system. We use a panel of Norwegian fishing trawlers data to estimate the model. Outputs are different species caught while inputs are labor and vessel size. We also control for number of days of operation, age of the vessel and year effects. Empirical results show that the average rate of RO is reduced by about 20 to 30 % due to technical inefficiency. On the other hand, average allocative efficiency is found to be about 78 %. The average overall efficiency is found to be around 60 %. Copyright Springer Science+Business Media New York 2013

Suggested Citation

  • Subal Kumbhakar & Frank Asche & Ragnar Tveteras, 2013. "Estimation and decomposition of inefficiency when producers maximize return to the outlay: an application to Norwegian fishing trawlers," Journal of Productivity Analysis, Springer, vol. 40(3), pages 307-321, December.
  • Handle: RePEc:kap:jproda:v:40:y:2013:i:3:p:307-321
    DOI: 10.1007/s11123-012-0336-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11123-012-0336-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11123-012-0336-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sean Pascoe & Louisa Coglan, 2002. "The Contribution of Unmeasurable Inputs to Fisheries Production: An Analysis of Technical Efficiency of Fishing Vessels in the English Channel," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 84(3), pages 585-597.
    2. Dupont, Diane P., 1990. "Rent dissipation in restricted access fisheries," Journal of Environmental Economics and Management, Elsevier, vol. 19(1), pages 26-44, July.
    3. COELLI, Tim, 2000. "On the econometric estimation of the distance function representation of a production technology," LIDAM Discussion Papers CORE 2000042, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. Almas Heshmati & Subal C. Kumbhakar, 1997. "Estimation Of Technical Efficiency In Swedish Crop Farms: A Pseudo Panel Data Approach," Journal of Agricultural Economics, Wiley Blackwell, vol. 48(1‐3), pages 22-37, January.
    5. Valderrama, Diego & Anderson, James L., 2010. "Market interactions between aquaculture and common-property fisheries: Recent evidence from the Bristol Bay sockeye salmon fishery in Alaska," Journal of Environmental Economics and Management, Elsevier, vol. 59(2), pages 115-128, March.
    6. repec:bla:scandj:v:97:y:1995:i:2:p:309-23 is not listed on IDEAS
    7. Fare, Rolf & Grosskopf, Shawna & Zaim, Osman, 2002. "Hyperbolic efficiency and return to the dollar," European Journal of Operational Research, Elsevier, vol. 136(3), pages 671-679, February.
    8. Dale Squires, 1988. "Production Technology, Costs, and Multiproduct Industry Structure: An Application of the Long-run Profit Function to the New England Fishing Industry," Canadian Journal of Economics, Canadian Economics Association, vol. 21(2), pages 359-378, May.
    9. Reinhard, Stijn & Knox Lovell, C. A. & Thijssen, Geert J., 2000. "Environmental efficiency with multiple environmentally detrimental variables; estimated with SFA and DEA," European Journal of Operational Research, Elsevier, vol. 121(2), pages 287-303, March.
    10. David M. Miller & P. Mohan Rao, 1989. "Analysis of Profit-Linked Total-Factor Productivity Measurement Models at the Firm Level," Management Science, INFORMS, vol. 35(6), pages 757-767, June.
    11. Kumbhakar, Subal C., 2011. "Estimation of production technology when the objective is to maximize return to the outlay," European Journal of Operational Research, Elsevier, vol. 208(2), pages 170-176, January.
    12. Brissimis, Sophocles N. & Delis, Manthos D. & Tsionas, Efthymios G., 2010. "Technical and allocative efficiency in European banking," European Journal of Operational Research, Elsevier, vol. 204(1), pages 153-163, July.
    13. Homans, Frances R. & Wilen, James E., 2005. "Markets and rent dissipation in regulated open access fisheries," Journal of Environmental Economics and Management, Elsevier, vol. 49(2), pages 381-404, March.
    14. E. Grifell-Tatjé & C. A. K. Lovell, 1999. "Profits and Productivity," Management Science, INFORMS, vol. 45(9), pages 1177-1193, September.
    15. Grafton, R Quentin & Squires, Dale & Fox, Kevin J, 2000. "Private Property and Economic Efficiency: A Study of a Common-Pool Resource," Journal of Law and Economics, University of Chicago Press, vol. 43(2), pages 679-713, October.
    16. Frank Asche & Daniel V. Gordon & Carsten L. Jensen, 2007. "Individual Vessel Quotas and Increased Fishing Pressure on Unregulated Species," Land Economics, University of Wisconsin Press, vol. 83(1), pages 41-49.
    17. Jondrow, James & Knox Lovell, C. A. & Materov, Ivan S. & Schmidt, Peter, 1982. "On the estimation of technical inefficiency in the stochastic frontier production function model," Journal of Econometrics, Elsevier, vol. 19(2-3), pages 233-238, August.
    18. Weninger, Quinn & Waters, James R., 2003. "Economic benefits of management reform in the northern Gulf of Mexico reef fish fishery," Journal of Environmental Economics and Management, Elsevier, vol. 46(2), pages 207-230, September.
    19. Hung-Jen Wang, 2002. "Heteroscedasticity and Non-Monotonic Efficiency Effects of a Stochastic Frontier Model," Journal of Productivity Analysis, Springer, vol. 18(3), pages 241-253, November.
    20. James E. Kirkley & Dale Squires & Ivar E. Strand, 1995. "Assessing Technical Efficiency in Commercial Fisheries: The Mid-Atlantic Sea Scallop Fishery," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 77(3), pages 686-697.
    21. Schmidt, Peter & Knox Lovell, C. A., 1979. "Estimating technical and allocative inefficiency relative to stochastic production and cost frontiers," Journal of Econometrics, Elsevier, vol. 9(3), pages 343-366, February.
    22. Squires, Dale & Kirkley, James, 1991. "Production quota in multiproduct pacific fisheries," Journal of Environmental Economics and Management, Elsevier, vol. 21(2), pages 109-126, September.
    23. Subal C. Kumbhakar, 2001. "Estimation of Profit Functions When Profit Is Not Maximum," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 83(1), pages 1-19.
    24. Dale Squires, 1987. "Long-Run Profit Functions for Multiproduct Firms," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 69(3), pages 558-569.
    25. Frank Asche & Trond Bjørndal & Daniel V. Gordon, 2009. "Resource Rent in Individual Quota Fisheries," Land Economics, University of Wisconsin Press, vol. 85(2), pages 279-291.
    26. Tim Coelli & Gholamreza Hajargasht & C.A. Knox Lovell, 2008. "Econometric Estimation of an Input Distance Function in a System of Equations," CEPA Working Papers Series WP012008, School of Economics, University of Queensland, Australia.
    27. John C. Panzar & Robert D. Willig, 1977. "Economies of Scale in Multi-Output Production," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 91(3), pages 481-493.
    28. Yu, Ming-Miin & Fan, Chih-Ku, 2008. "The effects of privatization on return to the dollar: A case study on technical efficiency, and price distortions of Taiwan's intercity bus services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(6), pages 935-950, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Boto-Garcia, David & Leoni, Veronica, 2022. "Estimating the dynamic effects of volcano eruptions on domestic tourism: Evidence based on mobile-phone geo-positioning records," Efficiency Series Papers 2022/03, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
    2. Lien, Gudbrand & Kumbhakar, Subal C. & Alem, Habtamu, 2018. "Endogeneity, heterogeneity, and determinants of inefficiency in Norwegian crop-producing farms," International Journal of Production Economics, Elsevier, vol. 201(C), pages 53-61.
    3. Luis Orea & Inmaculada Álvarez-Ayuso & Luis Servén, 2024. "The Structural and Productivity Effects of Infrastructure Provision in Developed and Developing Countries," Advances in Econometrics, in: Essays in Honor of Subal Kumbhakar, volume 46, pages 265-308, Emerald Group Publishing Limited.
    4. Orea, Luis, 2019. "The Econometric Measurement of Firms’ Efficiency," Efficiency Series Papers 2019/02, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
    5. Maximilian Koppenberg & Stefan Hirsch, 2022. "Markup estimation: A comparison of contemporary methods at the example of European food retailers," Agribusiness, John Wiley & Sons, Ltd., vol. 38(1), pages 108-133, January.
    6. Lukáš Čechura & Heinrich Hockmann, 2017. "Heterogeneity in Production Structures and Efficiency: An Analysis of the Czech Food Processing Industry," Pacific Economic Review, Wiley Blackwell, vol. 22(4), pages 702-719, October.
    7. Diekert , Florian & Lund , Kristen & Schweder, Tore, 2014. "From Open-Access to Individual Quotas: Disentangling the Effects of Policy Reform and Environmental Changes in the Norwegian Coastal Cod Fishery," Memorandum 07/2014, Oslo University, Department of Economics.
    8. Orea, Luis & Wall, Alan, 2015. "A parametric frontier model for measuring eco-efficiency," Efficiency Series Papers 2015/02, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
    9. Ogundari, Kolawole, 2014. "The Paradigm of Agricultural Efficiency and its Implication on Food Security in Africa: What Does Meta-analysis Reveal?," World Development, Elsevier, vol. 64(C), pages 690-702.
    10. Kumbhakar, Subal C., 2013. "Specification and estimation of multiple output technologies: A primal approach," European Journal of Operational Research, Elsevier, vol. 231(2), pages 465-473.
    11. Andries Richter & Anne Maria Eikeset & Daan Soest & Florian Klaus Diekert & Nils Chr. Stenseth, 2018. "Optimal Management Under Institutional Constraints: Determining a Total Allowable Catch for Different Fleet Segments in the Northeast Arctic Cod Fishery," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 69(4), pages 811-835, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kumbhakar, Subal C., 2011. "Estimation of production technology when the objective is to maximize return to the outlay," European Journal of Operational Research, Elsevier, vol. 208(2), pages 170-176, January.
    2. Anna M. Birkenbach & Andreea L. Cojocaru & Frank Asche & Atle G. Guttormsen & Martin D. Smith, 2020. "Seasonal Harvest Patterns in Multispecies Fisheries," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 75(3), pages 631-655, March.
    3. Tom Kompas & Tuong Nhu Che & R. Quentin Grafton, 2004. "Technical efficiency effects of input controls: evidence from Australia's banana prawn fishery," Applied Economics, Taylor & Francis Journals, vol. 36(15), pages 1631-1641.
    4. Diekert , Florian & Lund , Kristen & Schweder, Tore, 2014. "From Open-Access to Individual Quotas: Disentangling the Effects of Policy Reform and Environmental Changes in the Norwegian Coastal Cod Fishery," Memorandum 07/2014, Oslo University, Department of Economics.
    5. Roy, Manish & Mazumder, Ritwik, 2016. "Technical Efficiency of Fish Catch in Traditional Fishing: A Study in Southern Assam," Journal of Regional Development and Planning, Rajarshi Majumder, vol. 5(1), pages 55-68.
    6. Catherine J. Morrison Paul & Ronald G. Felthoven & Marcelo de O. Torres, 2010. "Productive performance in fisheries: modeling, measurement, and management," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 54(3), pages 343-360, July.
    7. repec:ags:aaea22:335749 is not listed on IDEAS
    8. Kurt E. Schnier & Ronald G. Felthoven, 2013. "Production Efficiency and Exit in Rights-Based Fisheries," Land Economics, University of Wisconsin Press, vol. 89(3), pages 538-557.
    9. Sean Pascoe & Parastoo Hassaszahed & Jesper Anderson & Knud Korsbrekke, 2003. "Economic versus physical input measures in the analysis of technical efficiency in fisheries," Applied Economics, Taylor & Francis Journals, vol. 35(15), pages 1699-1710.
    10. Efthymios G. Tsionas & Subal C. Kumbhakar & Emir Malikov, 2015. "Estimation of Input Distance Functions: A System Approach," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 97(5), pages 1478-1493.
    11. Solís, Daniel & del Corral, Julio & Perruso, Larry & Agar, Juan J., 2014. "Evaluating the impact of individual fishing quotas (IFQs) on the technical efficiency and composition of the US Gulf of Mexico red snapper commercial fishing fleet," Food Policy, Elsevier, vol. 46(C), pages 74-83.
    12. Kumbhakar, Subal C., 2013. "Specification and estimation of multiple output technologies: A primal approach," European Journal of Operational Research, Elsevier, vol. 231(2), pages 465-473.
    13. Lokina, Razack B., 2008. "Technical Efficiency and the Role of Skipper Skill in Artisanal Lake Victoria Fisheries," RFF Working Paper Series dp-08-13-efd, Resources for the Future.
    14. Nils-Arne Ekerhovd & Daniel V. Gordon, 2020. "Profitability, Capacity and Productivity Trends in an Evolving Rights Based Fishery: The Norwegian Purse Seine Fishery," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 77(3), pages 565-591, November.
    15. Subal C. Kumbhakar & Christopher F. Parmeter & Valentin Zelenyuk, 2022. "Stochastic Frontier Analysis: Foundations and Advances I," Springer Books, in: Subhash C. Ray & Robert G. Chambers & Subal C. Kumbhakar (ed.), Handbook of Production Economics, chapter 8, pages 331-370, Springer.
    16. Karlaftis, Matthew G. & Tsamboulas, Dimitrios, 2012. "Efficiency measurement in public transport: Are findings specification sensitive?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(2), pages 392-402.
    17. Llorca, Manuel & Rodriguez-Alvarez, Ana, 2024. "Economic, environmental, and energy equity convergence: Evidence of a multi-speed Europe?," Ecological Economics, Elsevier, vol. 219(C).
    18. Álvarez, Antonio, 2003. "Econometric Estimation of Fishing Production Functions when Stocks is Unknown: A Monte Carlo Analysis," Efficiency Series Papers 2003/09, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
    19. Solis, Daniel & del Corral, Julio & Perruso, Lawrence & Agar, Juan J., 2015. "Individual fishing quotas and fishing capacity in the US Gulf of Mexico red snapper fishery," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 59(2), April.
    20. Kumbhakar, Subal C., 2012. "Specification and estimation of primal production models," European Journal of Operational Research, Elsevier, vol. 217(3), pages 509-518.
    21. Catherine Paul & Marcelo O. Torres & Ronald Felthoven, 2009. "Fishing Revenue, Productivity and Product Choice in the Alaskan Pollock Fishery," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 44(4), pages 457-474, December.

    More about this item

    Keywords

    Distance function; Transformation function; Technical inefficiency; Allocative inefficiency; C51; D24;
    All these keywords.

    JEL classification:

    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:jproda:v:40:y:2013:i:3:p:307-321. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.