IDEAS home Printed from https://ideas.repec.org/a/kap/netspa/v7y2007i2p129-152.html
   My bibliography  Save this article

Location of Alternative-Fuel Stations Using the Flow-Refueling Location Model and Dispersion of Candidate Sites on Arcs

Author

Listed:
  • Michael Kuby
  • Seow Lim

Abstract

The Flow Refueling Location Model (FRLM) is a flow-intercepting model that locates p stations on a network to maximize the refueling of origin–destination flows. Because of the limited driving range of vehicles, network vertices do not constitute a finite dominating set. This paper extends the FRLM by adding candidate sites along arcs using three methods. The first identifies arc segments where a single facility could refuel a path that would otherwise require two facilities at vertices to refuel it. The other methods use the Added-Node Dispersion Problem (ANDP) to disperse candidate sites along arcs by minimax and maximin methods. While none of the methods generate a finite dominating set, results show that adding ANDP sites produces better solutions than mid-path segments or vertices only. Copyright Springer Science+Business Media, LLC 2007

Suggested Citation

  • Michael Kuby & Seow Lim, 2007. "Location of Alternative-Fuel Stations Using the Flow-Refueling Location Model and Dispersion of Candidate Sites on Arcs," Networks and Spatial Economics, Springer, vol. 7(2), pages 129-152, June.
  • Handle: RePEc:kap:netspa:v:7:y:2007:i:2:p:129-152
    DOI: 10.1007/s11067-006-9003-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11067-006-9003-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11067-006-9003-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bapna, Ravi & Thakur, Lakshman S. & Nair, Suresh K., 2002. "Infrastructure development for conversion to environmentally friendly fuel," European Journal of Operational Research, Elsevier, vol. 142(3), pages 480-496, November.
    2. David Simchi-Levi & Oded Berman, 1988. "A Heuristic Algorithm for the Traveling Salesman Location Problem on Networks," Operations Research, INFORMS, vol. 36(3), pages 478-484, June.
    3. J. N. Hooker & R. S. Garfinkel & C. K. Chen, 1991. "Finite Dominating Sets for Network Location Problems," Operations Research, INFORMS, vol. 39(1), pages 100-118, February.
    4. Erkut, Erhan, 1990. "The discrete p-dispersion problem," European Journal of Operational Research, Elsevier, vol. 46(1), pages 48-60, May.
    5. Oded Berman & Richard C. Larson & Nikoletta Fouska, 1992. "Optimal Location of Discretionary Service Facilities," Transportation Science, INFORMS, vol. 26(3), pages 201-211, August.
    6. Kuby, Michael & Lim, Seow, 2005. "The flow-refueling location problem for alternative-fuel vehicles," Socio-Economic Planning Sciences, Elsevier, vol. 39(2), pages 125-145, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. A. MirHassani & R. Ebrazi, 2013. "A Flexible Reformulation of the Refueling Station Location Problem," Transportation Science, INFORMS, vol. 47(4), pages 617-628, November.
    2. Yıldız, Barış & Arslan, Okan & Karaşan, Oya Ekin, 2016. "A branch and price approach for routing and refueling station location model," European Journal of Operational Research, Elsevier, vol. 248(3), pages 815-826.
    3. Kuby, Michael & Lim, Seow, 2005. "The flow-refueling location problem for alternative-fuel vehicles," Socio-Economic Planning Sciences, Elsevier, vol. 39(2), pages 125-145, June.
    4. Lin, Zhenhong & Ogden, Joan & Fan, Yueyue & Chen, Chien-Wei, 2009. "The Fuel-Travel-Back Approach to Hydrogen Station Siting," Institute of Transportation Studies, Working Paper Series qt14p44238, Institute of Transportation Studies, UC Davis.
    5. Hwang, Seong Wook & Kweon, Sang Jin & Ventura, Jose A., 2015. "Infrastructure development for alternative fuel vehicles on a highway road system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 77(C), pages 170-183.
    6. Upchurch, Christopher & Kuby, Michael, 2010. "Comparing the p-median and flow-refueling models for locating alternative-fuel stations," Journal of Transport Geography, Elsevier, vol. 18(6), pages 750-758.
    7. Mahmutoğulları, Özlem & Yaman, Hande, 2023. "Robust alternative fuel refueling station location problem with routing under decision-dependent flow uncertainty," European Journal of Operational Research, Elsevier, vol. 306(1), pages 173-188.
    8. Yongxi Huang & Shengyin Li & Zhen Qian, 2015. "Optimal Deployment of Alternative Fueling Stations on Transportation Networks Considering Deviation Paths," Networks and Spatial Economics, Springer, vol. 15(1), pages 183-204, March.
    9. Van Can Nguyen & Chi-Tai Wang & Ying-Jiun Hsieh, 2021. "Electrification of Highway Transportation with Solar and Wind Energy," Sustainability, MDPI, vol. 13(10), pages 1-28, May.
    10. Lim, Seow & Kuby, Michael, 2010. "Heuristic algorithms for siting alternative-fuel stations using the Flow-Refueling Location Model," European Journal of Operational Research, Elsevier, vol. 204(1), pages 51-61, July.
    11. Lee, Chungmok & Han, Jinil, 2017. "Benders-and-Price approach for electric vehicle charging station location problem under probabilistic travel range," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 130-152.
    12. Chung, Sung Hoon & Kwon, Changhyun, 2015. "Multi-period planning for electric car charging station locations: A case of Korean Expressways," European Journal of Operational Research, Elsevier, vol. 242(2), pages 677-687.
    13. Marilène Cherkesly & Claudio Contardo, 2021. "The conditional p-dispersion problem," Journal of Global Optimization, Springer, vol. 81(1), pages 23-83, September.
    14. Yang, Jun & Guo, Fang & Zhang, Min, 2017. "Optimal planning of swapping/charging station network with customer satisfaction," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 103(C), pages 174-197.
    15. Hong Gao & Kai Liu & Xinchao Peng & Cheng Li, 2020. "Optimal Location of Fast Charging Stations for Mixed Traffic of Electric Vehicles and Gasoline Vehicles Subject to Elastic Demands," Energies, MDPI, vol. 13(8), pages 1-16, April.
    16. Wang, Ying-Wei & Lin, Chuah-Chih, 2013. "Locating multiple types of recharging stations for battery-powered electric vehicle transport," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 58(C), pages 76-87.
    17. Tommy Carpenter & Andrew Curtis & S. Keshav, 2014. "The return on investment for taxi companies transitioning to electric vehicles," Transportation, Springer, vol. 41(4), pages 785-818, July.
    18. Ventura, Jose A. & Kweon, Sang Jin & Hwang, Seong Wook & Tormay, Matthew & Li, Chenxi, 2017. "Energy policy considerations in the design of an alternative-fuel refueling infrastructure to reduce GHG emissions on a transportation network," Energy Policy, Elsevier, vol. 111(C), pages 427-439.
    19. Li, Xiaopeng & Ma, Jiaqi & Cui, Jianxun & Ghiasi, Amir & Zhou, Fang, 2016. "Design framework of large-scale one-way electric vehicle sharing systems: A continuum approximation model," Transportation Research Part B: Methodological, Elsevier, vol. 88(C), pages 21-45.
    20. Yıldız, Barış & Olcaytu, Evren & Şen, Ahmet, 2019. "The urban recharging infrastructure design problem with stochastic demands and capacitated charging stations," Transportation Research Part B: Methodological, Elsevier, vol. 119(C), pages 22-44.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:netspa:v:7:y:2007:i:2:p:129-152. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.