IDEAS home Printed from https://ideas.repec.org/a/kap/hcarem/v27y2024i3d10.1007_s10729-024-09675-6.html
   My bibliography  Save this article

Multi-resource allocation and care sequence assignment in patient management: a stochastic programming approach

Author

Listed:
  • Xinyu Yao

    (Carnegie Mellon University)

  • Karmel S. Shehadeh

    (Lehigh University)

  • Rema Padman

    (Carnegie Mellon University)

Abstract

To mitigate outpatient care delivery inefficiencies induced by resource shortages and demand heterogeneity, this paper focuses on the problem of allocating and sequencing multiple medical resources so that patients scheduled for clinical care can experience efficient and coordinated care with minimum total waiting time. We leverage highly granular location data on people and medical resources collected via Real-Time Location System technologies to identify dominant patient care pathways. A novel two-stage Stochastic Mixed Integer Linear Programming model is proposed to determine the optimal patient sequence based on the available resources according to the care pathways that minimize patients’ expected total waiting time. The model incorporates the uncertainty in care activity duration via sample average approximation.We employ a Monte Carlo Optimization procedure to determine the appropriate sample size to obtain solutions that provide a good trade-off between approximation accuracy and computational time. Compared to the conventional deterministic model, our proposed model would significantly reduce waiting time for patients in the clinic by 60%, on average, with acceptable computational resource requirements and time complexity. In summary, this paper proposes a computationally efficient formulation for the multi-resource allocation and care sequence assignment optimization problem under uncertainty. It uses continuous assignment decision variables without timestamp and position indices, enabling the data-driven solution of problems with real-time allocation adjustment in a dynamic outpatient environment with complex clinical coordination constraints.

Suggested Citation

  • Xinyu Yao & Karmel S. Shehadeh & Rema Padman, 2024. "Multi-resource allocation and care sequence assignment in patient management: a stochastic programming approach," Health Care Management Science, Springer, vol. 27(3), pages 352-369, September.
  • Handle: RePEc:kap:hcarem:v:27:y:2024:i:3:d:10.1007_s10729-024-09675-6
    DOI: 10.1007/s10729-024-09675-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10729-024-09675-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10729-024-09675-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Karmel S. Shehadeh & Amy E. M. Cohn & Ruiwei Jiang, 2021. "Using stochastic programming to solve an outpatient appointment scheduling problem with random service and arrival times," Naval Research Logistics (NRL), John Wiley & Sons, vol. 68(1), pages 89-111, February.
    2. Harvey M. Wagner, 1959. "An integer linear‐programming model for machine scheduling," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 6(2), pages 131-140, June.
    3. Sujin Kim & Raghu Pasupathy & Shane G. Henderson, 2015. "A Guide to Sample Average Approximation," International Series in Operations Research & Management Science, in: Michael C Fu (ed.), Handbook of Simulation Optimization, edition 127, chapter 0, pages 207-243, Springer.
    4. Laureano Escudero & Araceli Garín & María Merino & Gloria Pérez, 2007. "The value of the stochastic solution in multistage problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 15(1), pages 48-64, July.
    5. Shehadeh, Karmel S. & Padman, Rema, 2021. "A distributionally robust optimization approach for stochastic elective surgery scheduling with limited intensive care unit capacity," European Journal of Operational Research, Elsevier, vol. 290(3), pages 901-913.
    6. Torabi, S.A. & Karimi, B. & Fatemi Ghomi, S.M.T., 2005. "The common cycle economic lot scheduling in flexible job shops: The finite horizon case," International Journal of Production Economics, Elsevier, vol. 97(1), pages 52-65, July.
    7. Yan Deng & Siqian Shen & Brian Denton, 2019. "Chance-Constrained Surgery Planning Under Conditions of Limited and Ambiguous Data," INFORMS Journal on Computing, INFORMS, vol. 31(3), pages 559-575, July.
    8. J. Christopher Beck & T. K. Feng & Jean-Paul Watson, 2011. "Combining Constraint Programming and Local Search for Job-Shop Scheduling," INFORMS Journal on Computing, INFORMS, vol. 23(1), pages 1-14, February.
    9. Shuangchi He & Melvyn Sim & Meilin Zhang, 2019. "Data-Driven Patient Scheduling in Emergency Departments: A Hybrid Robust-Stochastic Approach," Management Science, INFORMS, vol. 65(9), pages 4123-4140, September.
    10. Stefano Villa & Marta Barbieri & Federico Lega, 2009. "Restructuring patient flow logistics around patient care needs: implications and practicalities from three critical cases," Health Care Management Science, Springer, vol. 12(2), pages 155-165, June.
    11. Kong, Qingxia & Lee, Chung-Yee & Teo, Chung-Piaw & Zheng, Zhichao, 2016. "Appointment sequencing: Why the Smallest-Variance-First rule may not be optimal," European Journal of Operational Research, Elsevier, vol. 255(3), pages 809-821.
    12. Daniel A. Asamoah & Ramesh Sharda & Howard N. Rude & Derek Doran, 2018. "RFID-based information visibility for hospital operations: exploring its positive effects using discrete event simulation," Health Care Management Science, Springer, vol. 21(3), pages 305-316, September.
    13. Daniel Gartner & Rema Padman, 2020. "Flexible hospital-wide elective patient scheduling," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 71(6), pages 878-892, June.
    14. Jeff Linderoth & Alexander Shapiro & Stephen Wright, 2006. "The empirical behavior of sampling methods for stochastic programming," Annals of Operations Research, Springer, vol. 142(1), pages 215-241, February.
    15. Kato-Lin, Yi-Chin & Padman, Rema, 2019. "RFID technology-enabled Markov reward process for sequencing care coordination in ambulatory care: A case study," International Journal of Information Management, Elsevier, vol. 48(C), pages 12-21.
    16. Alan S. Manne, 1960. "On the Job-Shop Scheduling Problem," Operations Research, INFORMS, vol. 8(2), pages 219-223, April.
    17. Edward H. Bowman, 1959. "The Schedule-Sequencing Problem," Operations Research, INFORMS, vol. 7(5), pages 621-624, October.
    18. M. R. Garey & D. S. Johnson & Ravi Sethi, 1976. "The Complexity of Flowshop and Jobshop Scheduling," Mathematics of Operations Research, INFORMS, vol. 1(2), pages 117-129, May.
    19. Avishai Mandelbaum & Petar Momčilović & Nikolaos Trichakis & Sarah Kadish & Ryan Leib & Craig A. Bunnell, 2020. "Data-Driven Appointment-Scheduling Under Uncertainty: The Case of an Infusion Unit in a Cancer Center," Management Science, INFORMS, vol. 66(1), pages 243-270, January.
    20. Kibaek Kim & Sanjay Mehrotra, 2015. "A Two-Stage Stochastic Integer Programming Approach to Integrated Staffing and Scheduling with Application to Nurse Management," Operations Research, INFORMS, vol. 63(6), pages 1431-1451, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Da Col, Giacomo & Teppan, Erich C., 2022. "Industrial-size job shop scheduling with constraint programming," Operations Research Perspectives, Elsevier, vol. 9(C).
    2. Shehadeh, Karmel S. & Cohn, Amy E.M. & Epelman, Marina A., 2019. "Analysis of models for the Stochastic Outpatient Procedure Scheduling Problem," European Journal of Operational Research, Elsevier, vol. 279(3), pages 721-731.
    3. Kan Fang & Nelson Uhan & Fu Zhao & John Sutherland, 2013. "Flow shop scheduling with peak power consumption constraints," Annals of Operations Research, Springer, vol. 206(1), pages 115-145, July.
    4. Jian Zhang & Guofu Ding & Yisheng Zou & Shengfeng Qin & Jianlin Fu, 2019. "Review of job shop scheduling research and its new perspectives under Industry 4.0," Journal of Intelligent Manufacturing, Springer, vol. 30(4), pages 1809-1830, April.
    5. Park, Myoung-Ju & Ham, Andy, 2022. "Energy-aware flexible job shop scheduling under time-of-use pricing," International Journal of Production Economics, Elsevier, vol. 248(C).
    6. Ullrich, Christian A., 2013. "Integrated machine scheduling and vehicle routing with time windows," European Journal of Operational Research, Elsevier, vol. 227(1), pages 152-165.
    7. Bahman Naderi & Rubén Ruiz & Vahid Roshanaei, 2023. "Mixed-Integer Programming vs. Constraint Programming for Shop Scheduling Problems: New Results and Outlook," INFORMS Journal on Computing, INFORMS, vol. 35(4), pages 817-843, July.
    8. Meersman, Tine & Maenhout, Broos & Van Herck, Koen, 2023. "A nested Benders decomposition-based algorithm to solve the three-stage stochastic optimisation problem modeling population-based breast cancer screening," European Journal of Operational Research, Elsevier, vol. 310(3), pages 1273-1293.
    9. Miao Bai & Robert H. Storer & Gregory L. Tonkay, 2022. "Surgery Sequencing Coordination with Recovery Resource Constraints," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 1207-1223, March.
    10. Tohidi, Mohammad & Kazemi Zanjani, Masoumeh & Contreras, Ivan, 2021. "A physician planning framework for polyclinics under uncertainty," Omega, Elsevier, vol. 101(C).
    11. Ankit Bansal & Jean-Philippe Richard & Bjorn P. Berg & Yu-Li Huang, 2024. "A Sequential Follower Refinement Algorithm for Robust Surgery Scheduling," INFORMS Journal on Computing, INFORMS, vol. 36(3), pages 918-937, May.
    12. Ahmadi-Javid, Amir & Jalali, Zahra & Klassen, Kenneth J, 2017. "Outpatient appointment systems in healthcare: A review of optimization studies," European Journal of Operational Research, Elsevier, vol. 258(1), pages 3-34.
    13. Suvrajeet Sen & Yifan Liu, 2016. "Mitigating Uncertainty via Compromise Decisions in Two-Stage Stochastic Linear Programming: Variance Reduction," Operations Research, INFORMS, vol. 64(6), pages 1422-1437, December.
    14. Blazewicz, Jacek & Domschke, Wolfgang & Pesch, Erwin, 1996. "The job shop scheduling problem: Conventional and new solution techniques," European Journal of Operational Research, Elsevier, vol. 93(1), pages 1-33, August.
    15. Bahman Naderi & Vahid Roshanaei & Mehmet A. Begen & Dionne M. Aleman & David R. Urbach, 2021. "Increased Surgical Capacity without Additional Resources: Generalized Operating Room Planning and Scheduling," Production and Operations Management, Production and Operations Management Society, vol. 30(8), pages 2608-2635, August.
    16. Ming Zhang & Yang Lu & Youxi Hu & Nasser Amaitik & Yuchun Xu, 2022. "Dynamic Scheduling Method for Job-Shop Manufacturing Systems by Deep Reinforcement Learning with Proximal Policy Optimization," Sustainability, MDPI, vol. 14(9), pages 1-16, April.
    17. Mario Levorato & David Sotelo & Rosa Figueiredo & Yuri Frota, 2024. "Efficient solutions to the m-machine robust flow shop under budgeted uncertainty," Annals of Operations Research, Springer, vol. 338(1), pages 765-799, July.
    18. JC-H Pan & J-S Chen, 2003. "Minimizing makespan in re-entrant permutation flow-shops," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(6), pages 642-653, June.
    19. Chong Peng & Guanglin Wu & T Warren Liao & Hedong Wang, 2019. "Research on multi-agent genetic algorithm based on tabu search for the job shop scheduling problem," PLOS ONE, Public Library of Science, vol. 14(9), pages 1-19, September.
    20. Brammer, Janis & Lutz, Bernhard & Neumann, Dirk, 2022. "Permutation flow shop scheduling with multiple lines and demand plans using reinforcement learning," European Journal of Operational Research, Elsevier, vol. 299(1), pages 75-86.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:hcarem:v:27:y:2024:i:3:d:10.1007_s10729-024-09675-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.