IDEAS home Printed from https://ideas.repec.org/a/kap/hcarem/v23y2020i4d10.1007_s10729-020-09510-8.html
   My bibliography  Save this article

Radiotherapy treatment scheduling considering time window preferences

Author

Listed:
  • Bruno Vieira

    (Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital
    University of Twente)

  • Derya Demirtas

    (University of Twente
    University of Twente)

  • Jeroen B. Kamer

    (Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital)

  • Erwin W. Hans

    (University of Twente
    University of Twente)

  • Louis-Martin Rousseau

    (Polytechnique Montreal)

  • Nadia Lahrichi

    (Polytechnique Montreal)

  • Wim H. Harten

    (Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital
    Rijnstate General Hospital)

Abstract

External-beam radiotherapy treatments are delivered by a linear accelerator (linac) in a series of high-energy radiation sessions over multiple days. With the increase in the incidence of cancer and the use of radiotherapy (RT), the problem of automatically scheduling RT sessions while satisfying patient preferences regarding the time of their appointments becomes increasingly relevant. While most literature focuses on timeliness of treatments, several Dutch RT centers have expressed their need to include patient preferences when scheduling appointments for irradiation sessions. In this study, we propose a mixed-integer linear programming (MILP) model that solves the problem of scheduling and sequencing RT sessions considering time window preferences given by patients. The MILP model alone is able to solve the problem to optimality, scheduling all sessions within the desired window, in reasonable time for small size instances up to 66 patients and 2 linacs per week. For larger centers, we propose a heuristic method that pre-assigns patients to linacs to decompose the problem in subproblems (clusters of linacs) before using the MILP model to solve the subproblems to optimality in a sequential manner. We test our methodology using real-world data from a large Dutch RT center (8 linacs). Results show that, combining the heuristic with the MILP model, the problem can be solved in reasonable computation time with as few as 2.8% of the sessions being scheduled outside the desired time window.

Suggested Citation

  • Bruno Vieira & Derya Demirtas & Jeroen B. Kamer & Erwin W. Hans & Louis-Martin Rousseau & Nadia Lahrichi & Wim H. Harten, 2020. "Radiotherapy treatment scheduling considering time window preferences," Health Care Management Science, Springer, vol. 23(4), pages 520-534, December.
  • Handle: RePEc:kap:hcarem:v:23:y:2020:i:4:d:10.1007_s10729-020-09510-8
    DOI: 10.1007/s10729-020-09510-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10729-020-09510-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10729-020-09510-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Petra Vogl & Roland Braune & Karl F. Doerner, 2019. "Scheduling recurring radiotherapy appointments in an ion beam facility," Journal of Scheduling, Springer, vol. 22(2), pages 137-154, April.
    2. Coelho, José & Vanhoucke, Mario, 2011. "Multi-mode resource-constrained project scheduling using RCPSP and SAT solvers," European Journal of Operational Research, Elsevier, vol. 213(1), pages 73-82, August.
    3. Vieira, Bruno & Demirtas, Derya & van de Kamer, Jeroen B. & Hans, Erwin W. & van Harten, Wim, 2018. "A mathematical programming model for optimizing the staff allocation in radiotherapy under uncertain demand," European Journal of Operational Research, Elsevier, vol. 270(2), pages 709-722.
    4. Conforti, D. & Guerriero, F. & Guido, R., 2010. "Non-block scheduling with priority for radiotherapy treatments," European Journal of Operational Research, Elsevier, vol. 201(1), pages 289-296, February.
    5. Sauré, Antoine & Patrick, Jonathan & Tyldesley, Scott & Puterman, Martin L., 2012. "Dynamic multi-appointment patient scheduling for radiation therapy," European Journal of Operational Research, Elsevier, vol. 223(2), pages 573-584.
    6. Antoine Legrain & Marie-Andrée Fortin & Nadia Lahrichi & Louis-Martin Rousseau, 2015. "Online stochastic optimization of radiotherapy patient scheduling," Health Care Management Science, Springer, vol. 18(2), pages 110-123, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tu-San Pham & Louis-Martin Rousseau & Patrick Causmaecker, 2022. "A two-phase approach for the Radiotherapy Scheduling Problem," Health Care Management Science, Springer, vol. 25(2), pages 191-207, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kaining Shao & Wenjuan Fan & Zishu Yang & Shanlin Yang & Panos M. Pardalos, 2022. "A column generation approach for patient scheduling with setup time and deteriorating treatment duration," Operational Research, Springer, vol. 22(3), pages 2555-2586, July.
    2. Tu-San Pham & Louis-Martin Rousseau & Patrick Causmaecker, 2022. "A two-phase approach for the Radiotherapy Scheduling Problem," Health Care Management Science, Springer, vol. 25(2), pages 191-207, June.
    3. Petra Vogl & Roland Braune & Karl F. Doerner, 2019. "Scheduling recurring radiotherapy appointments in an ion beam facility," Journal of Scheduling, Springer, vol. 22(2), pages 137-154, April.
    4. Shao, Kaining & Fan, Wenjuan & Lan, Shaowen & Kong, Min & Yang, Shanlin, 2023. "A column generation-based heuristic for brachytherapy patient scheduling with multiple treatment sessions considering radioactive source decay and time constraints," Omega, Elsevier, vol. 118(C).
    5. Vieira, Bruno & Demirtas, Derya & van de Kamer, Jeroen B. & Hans, Erwin W. & van Harten, Wim, 2018. "A mathematical programming model for optimizing the staff allocation in radiotherapy under uncertain demand," European Journal of Operational Research, Elsevier, vol. 270(2), pages 709-722.
    6. Tu San Pham & Antoine Legrain & Patrick De Causmaecker & Louis-Martin Rousseau, 2023. "A Prediction-Based Approach for Online Dynamic Appointment Scheduling: A Case Study in Radiotherapy Treatment," INFORMS Journal on Computing, INFORMS, vol. 35(4), pages 844-868, July.
    7. Camila Ramos & Alejandro Cataldo & Juan–Carlos Ferrer, 2020. "Appointment and patient scheduling in chemotherapy: a case study in Chilean hospitals," Annals of Operations Research, Springer, vol. 286(1), pages 411-439, March.
    8. Siqiao Li & Ger Koole & Xiaolan Xie, 2020. "An adaptive priority policy for radiotherapy scheduling," Flexible Services and Manufacturing Journal, Springer, vol. 32(1), pages 154-180, March.
    9. Dina Bentayeb & Nadia Lahrichi & Louis-Martin Rousseau, 2019. "Patient scheduling based on a service-time prediction model: a data-driven study for a radiotherapy center," Health Care Management Science, Springer, vol. 22(4), pages 768-782, December.
    10. Timothy C. Y. Chan & Daniel Letourneau & Benjamin G. Potter, 2022. "Sparse flexible design: a machine learning approach," Flexible Services and Manufacturing Journal, Springer, vol. 34(4), pages 1066-1116, December.
    11. Ridvan Gedik & Shengfan Zhang & Chase Rainwater, 2017. "Strategic level proton therapy patient admission planning: a Markov decision process modeling approach," Health Care Management Science, Springer, vol. 20(2), pages 286-302, June.
    12. Xiang Ma & Antoine Sauré & Martin L. Puterman & Marianne Taylor & Scott Tyldesley, 2016. "Capacity planning and appointment scheduling for new patient oncology consults," Health Care Management Science, Springer, vol. 19(4), pages 347-361, December.
    13. Yasin Gocgun, 2018. "Simulation-based approximate policy iteration for dynamic patient scheduling for radiation therapy," Health Care Management Science, Springer, vol. 21(3), pages 317-325, September.
    14. Ahmadi-Javid, Amir & Jalali, Zahra & Klassen, Kenneth J, 2017. "Outpatient appointment systems in healthcare: A review of optimization studies," European Journal of Operational Research, Elsevier, vol. 258(1), pages 3-34.
    15. Antoine Legrain & Marie-Andrée Fortin & Nadia Lahrichi & Louis-Martin Rousseau, 2015. "Online stochastic optimization of radiotherapy patient scheduling," Health Care Management Science, Springer, vol. 18(2), pages 110-123, June.
    16. Roland Braune & Walter J. Gutjahr & Petra Vogl, 2022. "Stochastic radiotherapy appointment scheduling," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 30(4), pages 1239-1277, December.
    17. Marynissen, Joren & Demeulemeester, Erik, 2019. "Literature review on multi-appointment scheduling problems in hospitals," European Journal of Operational Research, Elsevier, vol. 272(2), pages 407-419.
    18. Ming Lv & Yi Li & Bo Kou & Zhili Zhou, 2017. "Integer programming for improving radiotherapy treatment efficiency," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-9, July.
    19. Tugba Cayirli & Pinar Dursun & Evrim D. Gunes, 2019. "An integrated analysis of capacity allocation and patient scheduling in presence of seasonal walk-ins," Flexible Services and Manufacturing Journal, Springer, vol. 31(2), pages 524-561, June.
    20. Ilkyeong Moon & Sanghyup Lee & Moonsoo Shin & Kwangyeol Ryu, 2016. "Evolutionary resource assignment for workload-based production scheduling," Journal of Intelligent Manufacturing, Springer, vol. 27(2), pages 375-388, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:hcarem:v:23:y:2020:i:4:d:10.1007_s10729-020-09510-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.