IDEAS home Printed from https://ideas.repec.org/a/kap/hcarem/v18y2015i3p318-333.html
   My bibliography  Save this article

Effect of individual protective behaviors on influenza transmission: an agent-based model

Author

Listed:
  • Elnaz Karimi
  • Ketra Schmitt
  • Ali Akgunduz

Abstract

It is well established in the epidemiological literature that individual behaviors have a significant effect on the spread of infectious diseases. Agent-based models are increasingly being recognized as the next generation of epidemiological models. In this research, we use the ability of agent-based models to incorporate behavior into simulations by examining the relative importance of vaccination and social distancing, two common measures for controlling the spread of infectious diseases, with respect to seasonal influenza. We modeled health behaviour using the result of a Health Belief Model study focused on influenza. We considered a control and a treatment group to explore the effect of education on people's health-related behaviors patterns. The control group reflects the behavioral patterns of students based on their general knowledge of influenza and its interventions while the treatment group illustrates the level of behavioral changes after individuals have been educated by a health care expert. The results of this study indicate that self-initiated behaviors are successful in controlling an outbreak in a high contact rate location such as a university. Self-initiated behaviors resulted in a population attack rate decrease of 17 % and a 25 % reduction in the peak number of cases. The simulation also provides significant evidence for the effect of an HBM theory-based educational program to increase the rate of applying the target interventions (vaccination by 22 % percent and social distancing by 41 %) and consequently to control the outbreak. Copyright Springer Science+Business Media New York 2015

Suggested Citation

  • Elnaz Karimi & Ketra Schmitt & Ali Akgunduz, 2015. "Effect of individual protective behaviors on influenza transmission: an agent-based model," Health Care Management Science, Springer, vol. 18(3), pages 318-333, September.
  • Handle: RePEc:kap:hcarem:v:18:y:2015:i:3:p:318-333
    DOI: 10.1007/s10729-014-9310-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10729-014-9310-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10729-014-9310-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. M. Mniszewski & S. Y. Del Valle & P. D. Stroud & J. M. Riese & S. J. Sydoriak, 2008. "Pandemic simulation of antivirals + school closures: buying time until strain-specific vaccine is available," Computational and Mathematical Organization Theory, Springer, vol. 14(3), pages 209-221, September.
    2. Christina E. Mills & James M. Robins & Marc Lipsitch, 2004. "Transmissibility of 1918 pandemic influenza," Nature, Nature, vol. 432(7019), pages 904-906, December.
    3. Neil M. Ferguson & Derek A.T. Cummings & Simon Cauchemez & Christophe Fraser & Steven Riley & Aronrag Meeyai & Sopon Iamsirithaworn & Donald S. Burke, 2005. "Strategies for containing an emerging influenza pandemic in Southeast Asia," Nature, Nature, vol. 437(7056), pages 209-214, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. van Ackere, Ann & Schulz, Peter J., 2020. "Explaining vaccination decisions: A system dynamics model of the interaction between epidemiological and behavioural factors," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
    2. Hazel Squires & Michael P. Kelly & Nigel Gilbert & Falko Sniehotta & Robin C. Purshouse, 2023. "The long‐term effectiveness and cost‐effectiveness of public health interventions; how can we model behavior? A review," Health Economics, John Wiley & Sons, Ltd., vol. 32(12), pages 2836-2854, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lawrence M. Wein & Michael P. Atkinson, 2009. "Assessing Infection Control Measures for Pandemic Influenza," Risk Analysis, John Wiley & Sons, vol. 29(7), pages 949-962, July.
    2. Savachkin, Alex & Uribe, Andrés, 2012. "Dynamic redistribution of mitigation resources during influenza pandemics," Socio-Economic Planning Sciences, Elsevier, vol. 46(1), pages 33-45.
    3. Marcel Salathé & James H Jones, 2010. "Dynamics and Control of Diseases in Networks with Community Structure," PLOS Computational Biology, Public Library of Science, vol. 6(4), pages 1-11, April.
    4. Arenas, Abbiana R. & Thackar, Neil B. & Haskell, Evan C., 2017. "The logistic growth model as an approximating model for viral load measurements of influenza A virus," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 133(C), pages 206-222.
    5. Ali Ekici & Pınar Keskinocak & Julie L. Swann, 2014. "Modeling Influenza Pandemic and Planning Food Distribution," Manufacturing & Service Operations Management, INFORMS, vol. 16(1), pages 11-27, February.
    6. Ozgur Araz & Alison Galvani & Lauren Meyers, 2012. "Geographic prioritization of distributing pandemic influenza vaccines," Health Care Management Science, Springer, vol. 15(3), pages 175-187, September.
    7. Wei Zhong & Yushim Kim & Megan Jehn, 2013. "Modeling dynamics of an influenza pandemic with heterogeneous coping behaviors: case study of a 2009 H1N1 outbreak in Arizona," Computational and Mathematical Organization Theory, Springer, vol. 19(4), pages 622-645, December.
    8. Carrasco, L R & Lee, V J & Chen, M I & Matchar, D B & Thompson, J P & Cook, A R, 2011. "Strategies for antiviral stockpiling for future influenza pandemics: a global epidemic-economic perspective," MPRA Paper 57763, University Library of Munich, Germany.
    9. Nedialko B Dimitrov & Sebastian Goll & Nathaniel Hupert & Babak Pourbohloul & Lauren Ancel Meyers, 2011. "Optimizing Tactics for Use of the U.S. Antiviral Strategic National Stockpile for Pandemic Influenza," PLOS ONE, Public Library of Science, vol. 6(1), pages 1-10, January.
    10. S. M. Mniszewski & S. Y. Del Valle & P. D. Stroud & J. M. Riese & S. J. Sydoriak, 2008. "Pandemic simulation of antivirals + school closures: buying time until strain-specific vaccine is available," Computational and Mathematical Organization Theory, Springer, vol. 14(3), pages 209-221, September.
    11. Jeremy Hadidjojo & Siew Ann Cheong, 2011. "Equal Graph Partitioning on Estimated Infection Network as an Effective Epidemic Mitigation Measure," PLOS ONE, Public Library of Science, vol. 6(7), pages 1-10, July.
    12. Tamer Edirne & Dilek Avci & Burçak Dagkara & Muslum Aslan, 2011. "Knowledge and anticipated attitudes of the community about bird flu outbreak in Turkey, 2007–2008: a survey-based descriptive study," International Journal of Public Health, Springer;Swiss School of Public Health (SSPH+), vol. 56(2), pages 163-168, April.
    13. Wei Zhong, 2017. "Simulating influenza pandemic dynamics with public risk communication and individual responsive behavior," Computational and Mathematical Organization Theory, Springer, vol. 23(4), pages 475-495, December.
    14. Houštecká, Anna & Koh, Dongya & Santaeulàlia-Llopis, Raül, 2021. "Contagion at work: Occupations, industries and human contact," Journal of Public Economics, Elsevier, vol. 200(C).
    15. Aditya Goenka & Lin Liu, 2012. "Infectious diseases and endogenous fluctuations," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 50(1), pages 125-149, May.
    16. Christoph Zimmer & Reza Yaesoubi & Ted Cohen, 2017. "A Likelihood Approach for Real-Time Calibration of Stochastic Compartmental Epidemic Models," PLOS Computational Biology, Public Library of Science, vol. 13(1), pages 1-21, January.
    17. John M Drake & Tobias S Brett & Shiyang Chen & Bogdan I Epureanu & Matthew J Ferrari & Éric Marty & Paige B Miller & Eamon B O’Dea & Suzanne M O’Regan & Andrew W Park & Pejman Rohani, 2019. "The statistics of epidemic transitions," PLOS Computational Biology, Public Library of Science, vol. 15(5), pages 1-14, May.
    18. Moshe B Hoshen & Anthony H Burton & Themis J V Bowcock, 2007. "Simulating disease transmission dynamics at a multi-scale level," International Journal of Microsimulation, International Microsimulation Association, vol. 1(1), pages 26-34.
    19. Linus Nyiwul, 2021. "Epidemic Control and Resource Allocation: Approaches and Implications for the Management of COVID-19," Studies in Microeconomics, , vol. 9(2), pages 283-305, December.
    20. Zhongqiang Bai & Juanle Wang & Mingming Wang & Mengxu Gao & Jiulin Sun, 2018. "Accuracy Assessment of Multi-Source Gridded Population Distribution Datasets in China," Sustainability, MDPI, vol. 10(5), pages 1-15, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:hcarem:v:18:y:2015:i:3:p:318-333. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.