IDEAS home Printed from https://ideas.repec.org/a/kap/hcarem/v18y2015i2p137-155.html
   My bibliography  Save this article

Patient flow improvement for an ophthalmic specialist outpatient clinic with aid of discrete event simulation and design of experiment

Author

Listed:
  • Chong Pan
  • Dali Zhang
  • Audrey Kon
  • Charity Wai
  • Woo Ang

Abstract

Continuous improvement in process efficiency for specialist outpatient clinic (SOC) systems is increasingly being demanded due to the growth of the patient population in Singapore. In this paper, we propose a discrete event simulation (DES) model to represent the patient and information flow in an ophthalmic SOC system in the Singapore National Eye Centre (SNEC). Different improvement strategies to reduce the turnaround time for patients in the SOC were proposed and evaluated with the aid of the DES model and the Design of Experiment (DOE). Two strategies for better patient appointment scheduling and one strategy for dilation-free examination are estimated to have a significant impact on turnaround time for patients. One of the improvement strategies has been implemented in the actual SOC system in the SNEC with promising improvement reported. Copyright Springer Science+Business Media New York 2015

Suggested Citation

  • Chong Pan & Dali Zhang & Audrey Kon & Charity Wai & Woo Ang, 2015. "Patient flow improvement for an ophthalmic specialist outpatient clinic with aid of discrete event simulation and design of experiment," Health Care Management Science, Springer, vol. 18(2), pages 137-155, June.
  • Handle: RePEc:kap:hcarem:v:18:y:2015:i:2:p:137-155
    DOI: 10.1007/s10729-014-9291-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10729-014-9291-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10729-014-9291-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Riitta Marjamaa & Paulus Torkki & Eero Hirvensalo & Olli Kirvelä, 2009. "What is the best workflow for an operating room? A simulation study of five scenarios," Health Care Management Science, Springer, vol. 12(2), pages 142-146, June.
    2. J B Jun & S H Jacobson & J R Swisher, 1999. "Application of discrete-event simulation in health care clinics: A survey," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 50(2), pages 109-123, February.
    3. N C Proudlove & S Black & A Fletcher, 2007. "OR and the challenge to improve the NHS: modelling for insight and improvement in in-patient flows," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(2), pages 145-158, February.
    4. Jacqueline Griffin & Shuangjun Xia & Siyang Peng & Pinar Keskinocak, 2012. "Improving patient flow in an obstetric unit," Health Care Management Science, Springer, vol. 15(1), pages 1-14, March.
    5. Pablo Santibáñez & Vincent Chow & John French & Martin Puterman & Scott Tyldesley, 2009. "Reducing patient wait times and improving resource utilization at British Columbia Cancer Agency’s ambulatory care unit through simulation," Health Care Management Science, Springer, vol. 12(4), pages 392-407, December.
    6. Qu, Xiuli & Shi, Jing, 2011. "Modeling the effect of patient choice on the performance of open access scheduling," International Journal of Production Economics, Elsevier, vol. 129(2), pages 314-327, February.
    7. Thomas Rohleder & Peter Lewkonia & Diane Bischak & Paul Duffy & Rosa Hendijani, 2011. "Using simulation modeling to improve patient flow at an outpatient orthopedic clinic," Health Care Management Science, Springer, vol. 14(2), pages 135-145, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Barros, Oscar & Weber, Richard & Reveco, Carlos, 2021. "Demand analysis and capacity management for hospital emergencies using advanced forecasting models and stochastic simulation," Operations Research Perspectives, Elsevier, vol. 8(C).
    2. Jesús Isaac Vázquez-Serrano & Rodrigo E. Peimbert-García & Leopoldo Eduardo Cárdenas-Barrón, 2021. "Discrete-Event Simulation Modeling in Healthcare: A Comprehensive Review," IJERPH, MDPI, vol. 18(22), pages 1-20, November.
    3. Vahab Vahdat & Jacqueline Griffin & James E. Stahl, 2018. "Decreasing patient length of stay via new flexible exam room allocation policies in ambulatory care clinics," Health Care Management Science, Springer, vol. 21(4), pages 492-516, December.
    4. Samuel Davis & Nasser Fard, 2020. "Theoretical bounds and approximation of the probability mass function of future hospital bed demand," Health Care Management Science, Springer, vol. 23(1), pages 20-33, March.
    5. Tugba Cayirli & Kum Khiong Yang, 2019. "Altering the Environment to Improve Appointment System Performance," Service Science, INFORMS, vol. 11(2), pages 138-154, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baril, Chantal & Gascon, Viviane & Miller, Jonathan & Côté, Nadine, 2016. "Use of a discrete-event simulation in a Kaizen event: A case study in healthcare," European Journal of Operational Research, Elsevier, vol. 249(1), pages 327-339.
    2. Vahab Vahdat & Jacqueline Griffin & James E. Stahl, 2018. "Decreasing patient length of stay via new flexible exam room allocation policies in ambulatory care clinics," Health Care Management Science, Springer, vol. 21(4), pages 492-516, December.
    3. Mielczarek, Bożena, 2014. "Simulation modelling for contracting hospital emergency services at the regional level," European Journal of Operational Research, Elsevier, vol. 235(1), pages 287-299.
    4. Brian Zoll & Pratik J. Parikh & Jennie Gallimore & Stephen Harrell & Brian Burke, 2015. "Impact of Diabetes E-Consults on Outpatient Clinic Workflow," Medical Decision Making, , vol. 35(6), pages 745-757, August.
    5. Michael Samudra & Carla Van Riet & Erik Demeulemeester & Brecht Cardoen & Nancy Vansteenkiste & Frank E. Rademakers, 2016. "Scheduling operating rooms: achievements, challenges and pitfalls," Journal of Scheduling, Springer, vol. 19(5), pages 493-525, October.
    6. Gogi, Anastasia & Tako, Antuela A. & Robinson, Stewart, 2016. "An experimental investigation into the role of simulation models in generating insights," European Journal of Operational Research, Elsevier, vol. 249(3), pages 931-944.
    7. Willoughby, Keith A. & Chan, Benjamin T.B. & Marques, Shauna, 2016. "Using simulation to test ideas for improving speech language pathology services," European Journal of Operational Research, Elsevier, vol. 252(2), pages 657-664.
    8. Proudlove, N.C. & Bisogno, S. & Onggo, B.S.S. & Calabrese, A. & Levialdi Ghiron, N., 2017. "Towards fully-facilitated discrete event simulation modelling: Addressing the model coding stage," European Journal of Operational Research, Elsevier, vol. 263(2), pages 583-595.
    9. Yuta Kanai & Hideaki Takagi, 2021. "Markov chain analysis for the neonatal inpatient flow in a hospital," Health Care Management Science, Springer, vol. 24(1), pages 92-116, March.
    10. Xiuli Qu & Yidong Peng & Nan Kong & Jing Shi, 2013. "A two-phase approach to scheduling multi-category outpatient appointments – A case study of a women’s clinic," Health Care Management Science, Springer, vol. 16(3), pages 197-216, September.
    11. Robinson, Stewart & Radnor, Zoe J. & Burgess, Nicola & Worthington, Claire, 2012. "SimLean: Utilising simulation in the implementation of lean in healthcare," European Journal of Operational Research, Elsevier, vol. 219(1), pages 188-197.
    12. Maria Di Mascolo & Alexia Gouin, 2013. "A generic simulation model to assess the performance of sterilization services in health establishments," Health Care Management Science, Springer, vol. 16(1), pages 45-61, March.
    13. Fournier, Derrick L. & Zaric, Gregory S., 2013. "Simulating neonatal intensive care capacity in British Columbia," Socio-Economic Planning Sciences, Elsevier, vol. 47(2), pages 131-141.
    14. Yong-Hong Kuo & Omar Rado & Benedetta Lupia & Janny M. Y. Leung & Colin A. Graham, 2016. "Improving the efficiency of a hospital emergency department: a simulation study with indirectly imputed service-time distributions," Flexible Services and Manufacturing Journal, Springer, vol. 28(1), pages 120-147, June.
    15. J Bowers, 2010. "Waiting list behaviour and the consequences for NHS targets," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(2), pages 246-254, February.
    16. Hui Zhang & Thomas J. Best & Anton Chivu & David O. Meltzer, 2020. "Simulation-based optimization to improve hospital patient assignment to physicians and clinical units," Health Care Management Science, Springer, vol. 23(1), pages 117-141, March.
    17. P. Troy & N. Lahrichi & D. Porubska & L. Rosenberg, 2020. "Fine-grained simulation optimization for the design and operations of a multi-activity clinic," Flexible Services and Manufacturing Journal, Springer, vol. 32(3), pages 599-628, September.
    18. Tugba Cayirli & Pinar Dursun & Evrim D. Gunes, 2019. "An integrated analysis of capacity allocation and patient scheduling in presence of seasonal walk-ins," Flexible Services and Manufacturing Journal, Springer, vol. 31(2), pages 524-561, June.
    19. Golmohammadi, Davood & Radnia, Naeimeh, 2016. "Prediction modeling and pattern recognition for patient readmission," International Journal of Production Economics, Elsevier, vol. 171(P1), pages 151-161.
    20. Bohui Liang & Ayten Turkcan & Mehmet Erkan Ceyhan & Keith Stuart, 2015. "Improvement of chemotherapy patient flow and scheduling in an outpatient oncology clinic," International Journal of Production Research, Taylor & Francis Journals, vol. 53(24), pages 7177-7190, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:hcarem:v:18:y:2015:i:2:p:137-155. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.