IDEAS home Printed from https://ideas.repec.org/a/kap/hcarem/v16y2013i1p45-61.html
   My bibliography  Save this article

A generic simulation model to assess the performance of sterilization services in health establishments

Author

Listed:
  • Maria Di Mascolo
  • Alexia Gouin

Abstract

The work presented here is with a view to improving performance of sterilization services in hospitals. We carried out a survey in a large number of health establishments in the Rhône-Alpes region in France. Based on the results of this survey and a detailed study of a specific service, we have built a generic model. The generic nature of the model relies on a common structure with a high level of detail. This model can be used to improve the performance of a specific sterilization service and/or to dimension its resources. It can also serve for quantitative comparison of performance indicators of various sterilization services. Copyright Springer Science+Business Media, LLC 2013

Suggested Citation

  • Maria Di Mascolo & Alexia Gouin, 2013. "A generic simulation model to assess the performance of sterilization services in health establishments," Health Care Management Science, Springer, vol. 16(1), pages 45-61, March.
  • Handle: RePEc:kap:hcarem:v:16:y:2013:i:1:p:45-61
    DOI: 10.1007/s10729-012-9210-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10729-012-9210-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10729-012-9210-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter VanBerkel & John Blake, 2007. "A comprehensive simulation for wait time reduction and capacity planning applied in general surgery," Health Care Management Science, Springer, vol. 10(4), pages 373-385, December.
    2. J B Jun & S H Jacobson & J R Swisher, 1999. "Application of discrete-event simulation in health care clinics: A survey," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 50(2), pages 109-123, February.
    3. Matthew Reynolds & Christos Vasilakis & Monsey McLeod & Nicholas Barber & Ann Mounsey & Sue Newton & Ann Jacklin & Bryony Franklin, 2011. "Using discrete event simulation to design a more efficient hospital pharmacy for outpatients," Health Care Management Science, Springer, vol. 14(3), pages 223-236, September.
    4. A Fletcher & D Halsall & S Huxham & D Worthington, 2007. "The DH Accident and Emergency Department model: a national generic model used locally," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(12), pages 1554-1562, December.
    5. Thomas Rohleder & Peter Lewkonia & Diane Bischak & Paul Duffy & Rosa Hendijani, 2011. "Using simulation modeling to improve patient flow at an outpatient orthopedic clinic," Health Care Management Science, Springer, vol. 14(2), pages 135-145, June.
    6. Joris Klundert & Philippe Muls & Maarten Schadd, 2008. "Optimizing sterilization logistics in hospitals," Health Care Management Science, Springer, vol. 11(1), pages 23-33, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adam Diamant & Joseph Milner & Fayez Quereshy & Bo Xu, 2018. "Inventory management of reusable surgical supplies," Health Care Management Science, Springer, vol. 21(3), pages 439-459, September.
    2. Jesús Isaac Vázquez-Serrano & Rodrigo E. Peimbert-García & Leopoldo Eduardo Cárdenas-Barrón, 2021. "Discrete-Event Simulation Modeling in Healthcare: A Comprehensive Review," IJERPH, MDPI, vol. 18(22), pages 1-20, November.
    3. Steffen Rickers & Florian Sahling, 2024. "Integrated procurement and reprocessing planning for reusable medical devices with a limited shelf life," Health Care Management Science, Springer, vol. 27(2), pages 168-187, June.
    4. Volland, Jonas & Fügener, Andreas & Schoenfelder, Jan & Brunner, Jens O., 2017. "Material logistics in hospitals: A literature review," Omega, Elsevier, vol. 69(C), pages 82-101.
    5. Ozturk, Onur & Begen, Mehmet A. & Zaric, Gregory S., 2014. "A branch and bound based heuristic for makespan minimization of washing operations in hospital sterilization services," European Journal of Operational Research, Elsevier, vol. 239(1), pages 214-226.
    6. Onur Ozturk, 2020. "A bi-criteria optimization model for medical device sterilization," Annals of Operations Research, Springer, vol. 293(2), pages 809-831, October.
    7. Shoaib, Mohd & Mustafee, Navonil & Madan, Karan & Ramamohan, Varun, 2023. "Leveraging multi-tier healthcare facility network simulations for capacity planning in a pandemic," Socio-Economic Planning Sciences, Elsevier, vol. 88(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mielczarek, Bożena, 2014. "Simulation modelling for contracting hospital emergency services at the regional level," European Journal of Operational Research, Elsevier, vol. 235(1), pages 287-299.
    2. Michael Samudra & Carla Van Riet & Erik Demeulemeester & Brecht Cardoen & Nancy Vansteenkiste & Frank E. Rademakers, 2016. "Scheduling operating rooms: achievements, challenges and pitfalls," Journal of Scheduling, Springer, vol. 19(5), pages 493-525, October.
    3. Gogi, Anastasia & Tako, Antuela A. & Robinson, Stewart, 2016. "An experimental investigation into the role of simulation models in generating insights," European Journal of Operational Research, Elsevier, vol. 249(3), pages 931-944.
    4. Willoughby, Keith A. & Chan, Benjamin T.B. & Marques, Shauna, 2016. "Using simulation to test ideas for improving speech language pathology services," European Journal of Operational Research, Elsevier, vol. 252(2), pages 657-664.
    5. Mahdavi, Mahdi & Malmström, Tomi & van de Klundert, Joris & Elkhuizen, Sylvia & Vissers, Jan, 2013. "Generic operational models in health service operations management: A systematic review," Socio-Economic Planning Sciences, Elsevier, vol. 47(4), pages 271-280.
    6. Baril, Chantal & Gascon, Viviane & Miller, Jonathan & Côté, Nadine, 2016. "Use of a discrete-event simulation in a Kaizen event: A case study in healthcare," European Journal of Operational Research, Elsevier, vol. 249(1), pages 327-339.
    7. Jesús Isaac Vázquez-Serrano & Rodrigo E. Peimbert-García & Leopoldo Eduardo Cárdenas-Barrón, 2021. "Discrete-Event Simulation Modeling in Healthcare: A Comprehensive Review," IJERPH, MDPI, vol. 18(22), pages 1-20, November.
    8. Vahab Vahdat & Jacqueline Griffin & James E. Stahl, 2018. "Decreasing patient length of stay via new flexible exam room allocation policies in ambulatory care clinics," Health Care Management Science, Springer, vol. 21(4), pages 492-516, December.
    9. Chi-Lun Rau & Pei-Fang Tsai & Sheau-Farn Liang & Jhih-Cian Tan & Hong-Cheng Syu & Yue-Ling Jheng & Ting-Syuan Ciou & Fu-Shan Jaw, 2013. "Using discrete-event simulation in strategic capacity planning for an outpatient physical therapy service," Health Care Management Science, Springer, vol. 16(4), pages 352-365, December.
    10. Chong Pan & Dali Zhang & Audrey Kon & Charity Wai & Woo Ang, 2015. "Patient flow improvement for an ophthalmic specialist outpatient clinic with aid of discrete event simulation and design of experiment," Health Care Management Science, Springer, vol. 18(2), pages 137-155, June.
    11. Thomas Rohleder & Peter Lewkonia & Diane Bischak & Paul Duffy & Rosa Hendijani, 2011. "Using simulation modeling to improve patient flow at an outpatient orthopedic clinic," Health Care Management Science, Springer, vol. 14(2), pages 135-145, June.
    12. Adrian Fletcher & Dave Worthington, 2009. "What is a ‘generic’ hospital model?—a comparison of ‘generic’ and ‘specific’ hospital models of emergency patient flows," Health Care Management Science, Springer, vol. 12(4), pages 374-391, December.
    13. Yong-Hong Kuo & Omar Rado & Benedetta Lupia & Janny M. Y. Leung & Colin A. Graham, 2016. "Improving the efficiency of a hospital emergency department: a simulation study with indirectly imputed service-time distributions," Flexible Services and Manufacturing Journal, Springer, vol. 28(1), pages 120-147, June.
    14. Dollevoet, Twan & van Essen, J. Theresia & Glorie, Kristiaan M., 2018. "Solution methods for the tray optimization problem," European Journal of Operational Research, Elsevier, vol. 271(3), pages 1070-1084.
    15. Bohui Liang & Ayten Turkcan & Mehmet Erkan Ceyhan & Keith Stuart, 2015. "Improvement of chemotherapy patient flow and scheduling in an outpatient oncology clinic," International Journal of Production Research, Taylor & Francis Journals, vol. 53(24), pages 7177-7190, December.
    16. Lixiang Jiang & Ronald Giachetti, 2008. "A queueing network model to analyze the impact of parallelization of care on patient cycle time," Health Care Management Science, Springer, vol. 11(3), pages 248-261, September.
    17. Eren Demir & Christos Vasilakis & Reda Lebcir & David Southern, 2015. "A simulation-based decision support tool for informing the management of patients with Parkinson’s disease," International Journal of Production Research, Taylor & Francis Journals, vol. 53(24), pages 7238-7251, December.
    18. Brian Zoll & Pratik J. Parikh & Jennie Gallimore & Stephen Harrell & Brian Burke, 2015. "Impact of Diabetes E-Consults on Outpatient Clinic Workflow," Medical Decision Making, , vol. 35(6), pages 745-757, August.
    19. Kaya, Onur & Teymourifar, Aydin & Ozturk, Gurkan, 2020. "Analysis of different public policies through simulation to increase total social utility in a healthcare system," Socio-Economic Planning Sciences, Elsevier, vol. 70(C).
    20. Navonil Mustafee & Korina Katsaliaki & Paul Fishwick, 2014. "Exploring the modelling and simulation knowledge base through journal co-citation analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(3), pages 2145-2159, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:hcarem:v:16:y:2013:i:1:p:45-61. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.