IDEAS home Printed from https://ideas.repec.org/a/kap/hcarem/v16y2013i4p281-299.html
   My bibliography  Save this article

Stochastic online appointment scheduling of multi-step sequential procedures in nuclear medicine

Author

Listed:
  • Eduardo Pérez
  • Lewis Ntaimo
  • César Malavé
  • Carla Bailey
  • Peter McCormack

Abstract

The increased demand for medical diagnosis procedures has been recognized as one of the contributors to the rise of health care costs in the U.S. in the last few years. Nuclear medicine is a subspecialty of radiology that uses advanced technology and radiopharmaceuticals for the diagnosis and treatment of medical conditions. Procedures in nuclear medicine require the use of radiopharmaceuticals, are multi-step, and have to be performed under strict time window constraints. These characteristics make the scheduling of patients and resources in nuclear medicine challenging. In this work, we derive a stochastic online scheduling algorithm for patient and resource scheduling in nuclear medicine departments which take into account the time constraints imposed by the decay of the radiopharmaceuticals and the stochastic nature of the system when scheduling patients. We report on a computational study of the new methodology applied to a real clinic. We use both patient and clinic performance measures in our study. The results show that the new method schedules about 600 more patients per year on average than a scheduling policy that was used in practice by improving the way limited resources are managed at the clinic. The new methodology finds the best start time and resources to be used for each appointment. Furthermore, the new method decreases patient waiting time for an appointment by about two days on average. Copyright Springer Science+Business Media New York 2013

Suggested Citation

  • Eduardo Pérez & Lewis Ntaimo & César Malavé & Carla Bailey & Peter McCormack, 2013. "Stochastic online appointment scheduling of multi-step sequential procedures in nuclear medicine," Health Care Management Science, Springer, vol. 16(4), pages 281-299, December.
  • Handle: RePEc:kap:hcarem:v:16:y:2013:i:4:p:281-299
    DOI: 10.1007/s10729-013-9224-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10729-013-9224-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10729-013-9224-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. C. Helmberg & S. Röhl, 2007. "A Case Study of Joint Online Truck Scheduling and Inventory Management for Multiple Warehouses," Operations Research, INFORMS, vol. 55(4), pages 733-752, August.
    2. Camilo Mancilla & Robert Storer, 2012. "A sample average approximation approach to stochastic appointment sequencing and scheduling," IISE Transactions, Taylor & Francis Journals, vol. 44(8), pages 655-670.
    3. Brian Denton & James Viapiano & Andrea Vogl, 2007. "Optimization of surgery sequencing and scheduling decisions under uncertainty," Health Care Management Science, Springer, vol. 10(1), pages 13-24, February.
    4. Pascal Hentenryck & Russell Bent & Luc Mercier & Yannis Vergados, 2009. "Online stochastic reservation systems," Annals of Operations Research, Springer, vol. 171(1), pages 101-126, October.
    5. Linda V. Green & Sergei Savin & Ben Wang, 2006. "Managing Patient Service in a Diagnostic Medical Facility," Operations Research, INFORMS, vol. 54(1), pages 11-25, February.
    6. Russell W. Bent & Pascal Van Hentenryck, 2004. "Scenario-Based Planning for Partially Dynamic Vehicle Routing with Stochastic Customers," Operations Research, INFORMS, vol. 52(6), pages 977-987, December.
    7. J Patrick & M L Puterman, 2007. "Improving resource utilization for diagnostic services through flexible inpatient scheduling: A method for improving resource utilization," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(2), pages 235-245, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thierry Garaix & Salim Rostami & Xiaolan Xie, 2020. "Daily outpatient chemotherapy appointment scheduling with random deferrals," Flexible Services and Manufacturing Journal, Springer, vol. 32(1), pages 129-153, March.
    2. Eduardo Pérez & David P. Dzubay, 2021. "A scheduling-based methodology for improving patient perceptions of quality of care in intensive care units," Health Care Management Science, Springer, vol. 24(1), pages 203-215, March.
    3. Eduardo Pérez, 2022. "An Appointment Planning Algorithm for Reducing Patient Check-In Waiting Times in Multispecialty Outpatient Clinics," SN Operations Research Forum, Springer, vol. 3(3), pages 1-22, September.
    4. Nur Banu Demir & Serhat Gul & Melih Çelik, 2021. "A stochastic programming approach for chemotherapy appointment scheduling," Naval Research Logistics (NRL), John Wiley & Sons, vol. 68(1), pages 112-133, February.
    5. Marynissen, Joren & Demeulemeester, Erik, 2019. "Literature review on multi-appointment scheduling problems in hospitals," European Journal of Operational Research, Elsevier, vol. 272(2), pages 407-419.
    6. Michelle Alvarado & Lewis Ntaimo, 2018. "Chemotherapy appointment scheduling under uncertainty using mean-risk stochastic integer programming," Health Care Management Science, Springer, vol. 21(1), pages 87-104, March.
    7. Sharan Srinivas & A. Ravi Ravindran, 2020. "Designing schedule configuration of a hybrid appointment system for a two-stage outpatient clinic with multiple servers," Health Care Management Science, Springer, vol. 23(3), pages 360-386, September.
    8. Mostafa Khatami & Amir Salehipour, 2021. "Coupled task scheduling with time-dependent processing times," Journal of Scheduling, Springer, vol. 24(2), pages 223-236, April.
    9. William P. Millhiser & Emre A. Veral, 2019. "A decision support system for real-time scheduling of multiple patient classes in outpatient services," Health Care Management Science, Springer, vol. 22(1), pages 180-195, March.
    10. Xuanzhu Fan & Jiafu Tang & Chongjun Yan, 2020. "Appointment scheduling optimization with two stages diagnosis for clinic outpatient," Computational Statistics, Springer, vol. 35(2), pages 469-490, June.
    11. Namakshenas, Mohammad & Mazdeh, Mohammad Mahdavi & Braaksma, Aleida & Heydari, Mehdi, 2023. "Appointment scheduling for medical diagnostic centers considering time-sensitive pharmaceuticals: A dynamic robust optimization approach," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1018-1031.
    12. Dogru, Ali K. & Melouk, Sharif H., 2019. "Adaptive appointment scheduling for patient-centered medical homes," Omega, Elsevier, vol. 85(C), pages 166-181.
    13. Dina Bentayeb & Nadia Lahrichi & Louis-Martin Rousseau, 2023. "On integrating patient appointment grids and technologist schedules in a radiology center," Health Care Management Science, Springer, vol. 26(1), pages 62-78, March.
    14. Hyun-Jung Alvarez-Oh & Hari Balasubramanian & Ekin Koker & Ana Muriel, 2018. "Stochastic Appointment Scheduling in a Team Primary Care Practice with Two Flexible Nurses and Two Dedicated Providers," Service Science, INFORMS, vol. 10(3), pages 241-260, September.
    15. Andrés Miniguano-Trujillo & Fernanda Salazar & Ramiro Torres & Patricio Arias & Koraima Sotomayor, 2021. "An integer programming model to assign patients based on mental health impact for tele-psychotherapy intervention during the Covid–19 emergency," Health Care Management Science, Springer, vol. 24(2), pages 286-304, June.
    16. Ahmadi-Javid, Amir & Jalali, Zahra & Klassen, Kenneth J, 2017. "Outpatient appointment systems in healthcare: A review of optimization studies," European Journal of Operational Research, Elsevier, vol. 258(1), pages 3-34.
    17. Mostafa Khatami & Amir Salehipour, 2021. "A binary search algorithm for the general coupled task scheduling problem," 4OR, Springer, vol. 19(4), pages 593-611, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmadi-Javid, Amir & Jalali, Zahra & Klassen, Kenneth J, 2017. "Outpatient appointment systems in healthcare: A review of optimization studies," European Journal of Operational Research, Elsevier, vol. 258(1), pages 3-34.
    2. Yiting Xing & Ling Li & Zhuming Bi & Marzena Wilamowska‐Korsak & Li Zhang, 2013. "Operations Research (OR) in Service Industries: A Comprehensive Review," Systems Research and Behavioral Science, Wiley Blackwell, vol. 30(3), pages 300-353, May.
    3. Shenghai Zhou & Yichuan Ding & Woonghee Tim Huh & Guohua Wan, 2021. "Constant Job‐Allowance Policies for Appointment Scheduling: Performance Bounds and Numerical Analysis," Production and Operations Management, Production and Operations Management Society, vol. 30(7), pages 2211-2231, July.
    4. Na Geng & Letian Chen & Ran Liu & Yanhong Zhu, 2017. "Optimal patient assignment for W queueing network in a diagnostic facility setting," International Journal of Production Research, Taylor & Francis Journals, vol. 55(19), pages 5609-5631, October.
    5. Esmaeil Keyvanshokooh & Pooyan Kazemian & Mohammad Fattahi & Mark P. Van Oyen, 2022. "Coordinated and Priority‐Based Surgical Care: An Integrated Distributionally Robust Stochastic Optimization Approach," Production and Operations Management, Production and Operations Management Society, vol. 31(4), pages 1510-1535, April.
    6. Eun, Joonyup & Kim, Sang-Phil & Yih, Yuehwern & Tiwari, Vikram, 2019. "Scheduling elective surgery patients considering time-dependent health urgency: Modeling and solution approaches," Omega, Elsevier, vol. 86(C), pages 137-153.
    7. Gang Du & Xinyue Li & Hui Hu & Xiaoling Ouyang, 2018. "Optimizing Daily Service Scheduling for Medical Diagnostic Equipment Considering Patient Satisfaction and Hospital Revenue," Sustainability, MDPI, vol. 10(9), pages 1-23, September.
    8. Yifei Sun & Usha Nandini Raghavan & Vikrant Vaze & Christopher S Hall & Patricia Doyle & Stacey Sullivan Richard & Christoph Wald, 2021. "Stochastic programming for outpatient scheduling with flexible inpatient exam accommodation," Health Care Management Science, Springer, vol. 24(3), pages 460-481, September.
    9. Serhat Gul, 2018. "A Stochastic Programming Approach for Appointment Scheduling Under Limited Availability of Surgery Turnover Teams," Service Science, INFORMS, vol. 10(3), pages 277-288, September.
    10. Shehadeh, Karmel S. & Cohn, Amy E.M. & Epelman, Marina A., 2019. "Analysis of models for the Stochastic Outpatient Procedure Scheduling Problem," European Journal of Operational Research, Elsevier, vol. 279(3), pages 721-731.
    11. Zhan, Yang & Wang, Zizhuo & Wan, Guohua, 2021. "Home service routing and appointment scheduling with stochastic service times," European Journal of Operational Research, Elsevier, vol. 288(1), pages 98-110.
    12. Zexian Zeng & Xiaolei Xie & Heidi Menaker & Susan G. Sanford-Ring & Jingshan Li, 2018. "Performance evaluation of operating room schedules in orthopedic surgery," Flexible Services and Manufacturing Journal, Springer, vol. 30(1), pages 198-223, June.
    13. Nur Banu Demir & Serhat Gul & Melih Çelik, 2021. "A stochastic programming approach for chemotherapy appointment scheduling," Naval Research Logistics (NRL), John Wiley & Sons, vol. 68(1), pages 112-133, February.
    14. van Eekelen, Wouter, 2023. "Distributionally robust views on queues and related stochastic models," Other publications TiSEM 9b99fc05-9d68-48eb-ae8c-9, Tilburg University, School of Economics and Management.
    15. Jiang, Bowen & Tang, Jiafu & Yan, Chongjun, 2019. "A stochastic programming model for outpatient appointment scheduling considering unpunctuality," Omega, Elsevier, vol. 82(C), pages 70-82.
    16. Tugba Cayirli & Kum Khiong Yang & Ser Aik Quek, 2012. "A Universal Appointment Rule in the Presence of No‐Shows and Walk‐Ins," Production and Operations Management, Production and Operations Management Society, vol. 21(4), pages 682-697, July.
    17. Namakshenas, Mohammad & Mazdeh, Mohammad Mahdavi & Braaksma, Aleida & Heydari, Mehdi, 2023. "Appointment scheduling for medical diagnostic centers considering time-sensitive pharmaceuticals: A dynamic robust optimization approach," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1018-1031.
    18. Paola Cappanera & Filippo Visintin & Carlo Banditori & Daniele Feo, 2019. "Evaluating the long-term effects of appointment scheduling policies in a magnetic resonance imaging setting," Flexible Services and Manufacturing Journal, Springer, vol. 31(1), pages 212-254, March.
    19. Hans-Jörg Schütz & Rainer Kolisch, 2013. "Capacity allocation for demand of different customer-product-combinations with cancellations, no-shows, and overbooking when there is a sequential delivery of service," Annals of Operations Research, Springer, vol. 206(1), pages 401-423, July.
    20. Ho-Yin Mak & Ying Rong & Jiawei Zhang, 2014. "Sequencing Appointments for Service Systems Using Inventory Approximations," Manufacturing & Service Operations Management, INFORMS, vol. 16(2), pages 251-262, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:hcarem:v:16:y:2013:i:4:p:281-299. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.