IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v55y2017i19p5609-5631.html
   My bibliography  Save this article

Optimal patient assignment for W queueing network in a diagnostic facility setting

Author

Listed:
  • Na Geng
  • Letian Chen
  • Ran Liu
  • Yanhong Zhu

Abstract

Quick examination is becoming increasingly critical for the diagnosis of patients. Increasing demand and insufficient diagnostic facilities lead to longer patient waiting times. It is important for hospital managers to reduce the waiting time of high-priority patients. To reduce the patients’ waiting time, the capacity in working time is divided into special time slots for high-priority patients and regular time slots for all patients. Low-priority patients are allowed to be referred to extra time slots by overtime or using the capacity of other hospitals. Two types of patients and three types of capacities form a W queueing network. This paper proposes an average-cost Markov Decision Process (MDP) model to assign the patients to the appropriate queue with the objective of minimising the weighted waiting cost and referral penalty. Structural properties of the optimal control policy under a given capacity are proved via discount-cost MDP. Extensive numerical experiments are performed to show the efficiency of the proposed patient assignment policy and to explore the impact of different parameters on the control policy.

Suggested Citation

  • Na Geng & Letian Chen & Ran Liu & Yanhong Zhu, 2017. "Optimal patient assignment for W queueing network in a diagnostic facility setting," International Journal of Production Research, Taylor & Francis Journals, vol. 55(19), pages 5609-5631, October.
  • Handle: RePEc:taf:tprsxx:v:55:y:2017:i:19:p:5609-5631
    DOI: 10.1080/00207543.2017.1324650
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2017.1324650
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2017.1324650?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Geng, Na & Xie, Xiaolan, 2012. "Optimizing contracted resource capacity with two advance cancelation modes," European Journal of Operational Research, Elsevier, vol. 221(3), pages 501-512.
    2. J. Michael Harrison & Assaf Zeevi, 2004. "Dynamic Scheduling of a Multiclass Queue in the Halfin-Whitt Heavy Traffic Regime," Operations Research, INFORMS, vol. 52(2), pages 243-257, April.
    3. Jiafu Tang & Yu Wang, 2015. "An adjustable robust optimisation method for elective and emergency surgery capacity allocation with demand uncertainty," International Journal of Production Research, Taylor & Francis Journals, vol. 53(24), pages 7317-7328, December.
    4. Alexander Erdelyi & Huseyin Topaloglu, 2009. "Computing protection level policies for dynamic capacity allocation problems by using stochastic approximation methods," IISE Transactions, Taylor & Francis Journals, vol. 41(6), pages 498-510.
    5. Carrie Ka Yuk Lin, 2015. "An adaptive scheduling heuristic with memory for the block appointment system of an outpatient specialty clinic," International Journal of Production Research, Taylor & Francis Journals, vol. 53(24), pages 7488-7516, December.
    6. Jonathan Patrick & Martin L. Puterman & Maurice Queyranne, 2008. "Dynamic Multipriority Patient Scheduling for a Diagnostic Resource," Operations Research, INFORMS, vol. 56(6), pages 1507-1525, December.
    7. George Steiner & Rui Zhang, 2011. "Revised Delivery-Time Quotation in Scheduling with Tardiness Penalties," Operations Research, INFORMS, vol. 59(6), pages 1504-1511, December.
    8. Chongjun Yan & Jiafu Tang & Bowen Jiang & Richard Y.K. Fung, 2015. "Sequential appointment scheduling considering patient choice and service fairness," International Journal of Production Research, Taylor & Francis Journals, vol. 53(24), pages 7376-7395, December.
    9. Linda V. Green & Sergei Savin & Ben Wang, 2006. "Managing Patient Service in a Diagnostic Medical Facility," Operations Research, INFORMS, vol. 54(1), pages 11-25, February.
    10. J Patrick & M L Puterman, 2007. "Improving resource utilization for diagnostic services through flexible inpatient scheduling: A method for improving resource utilization," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(2), pages 235-245, February.
    11. Nan Liu & Serhan Ziya & Vidyadhar G. Kulkarni, 2010. "Dynamic Scheduling of Outpatient Appointments Under Patient No-Shows and Cancellations," Manufacturing & Service Operations Management, INFORMS, vol. 12(2), pages 347-364, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hao, Yuchen & Liu, Chuang & Zhao, Lugang & Liu, Weibo, 2023. "A dual-clustering algorithm for a robust medical grid partition problem considering patient referral," Socio-Economic Planning Sciences, Elsevier, vol. 88(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmadi-Javid, Amir & Jalali, Zahra & Klassen, Kenneth J, 2017. "Outpatient appointment systems in healthcare: A review of optimization studies," European Journal of Operational Research, Elsevier, vol. 258(1), pages 3-34.
    2. Paola Cappanera & Filippo Visintin & Carlo Banditori & Daniele Feo, 2019. "Evaluating the long-term effects of appointment scheduling policies in a magnetic resonance imaging setting," Flexible Services and Manufacturing Journal, Springer, vol. 31(1), pages 212-254, March.
    3. Gang Du & Xinyue Li & Hui Hu & Xiaoling Ouyang, 2018. "Optimizing Daily Service Scheduling for Medical Diagnostic Equipment Considering Patient Satisfaction and Hospital Revenue," Sustainability, MDPI, vol. 10(9), pages 1-23, September.
    4. Hans-Jörg Schütz & Rainer Kolisch, 2013. "Capacity allocation for demand of different customer-product-combinations with cancellations, no-shows, and overbooking when there is a sequential delivery of service," Annals of Operations Research, Springer, vol. 206(1), pages 401-423, July.
    5. Geng, Na & Xie, Xiaolan, 2012. "Optimizing contracted resource capacity with two advance cancelation modes," European Journal of Operational Research, Elsevier, vol. 221(3), pages 501-512.
    6. Van-Anh Truong, 2015. "Optimal Advance Scheduling," Management Science, INFORMS, vol. 61(7), pages 1584-1597, July.
    7. Katsumi Morikawa & Katsuhiko Takahashi & Daisuke Hirotani, 2018. "Performance evaluation of candidate appointment schedules using clearing functions," Journal of Intelligent Manufacturing, Springer, vol. 29(3), pages 509-518, March.
    8. Silva, Thiago A.O. & de Souza, Mauricio C., 2020. "Surgical scheduling under uncertainty by approximate dynamic programming," Omega, Elsevier, vol. 95(C).
    9. Tugba Cayirli & Kum Khiong Yang & Ser Aik Quek, 2012. "A Universal Appointment Rule in the Presence of No‐Shows and Walk‐Ins," Production and Operations Management, Production and Operations Management Society, vol. 21(4), pages 682-697, July.
    10. Namakshenas, Mohammad & Mazdeh, Mohammad Mahdavi & Braaksma, Aleida & Heydari, Mehdi, 2023. "Appointment scheduling for medical diagnostic centers considering time-sensitive pharmaceuticals: A dynamic robust optimization approach," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1018-1031.
    11. Christos Zacharias & Tallys Yunes, 2020. "Multimodularity in the Stochastic Appointment Scheduling Problem with Discrete Arrival Epochs," Management Science, INFORMS, vol. 66(2), pages 744-763, February.
    12. Bowen Pang & Xiaolei Xie & Feng Ju & James Pipe, 2022. "A dynamic sequential decision-making model on MRI real-time scheduling with simulation-based optimization," Health Care Management Science, Springer, vol. 25(3), pages 426-440, September.
    13. Liping Zhou & Na Geng & Zhibin Jiang & Shan Jiang, 2022. "Integrated Multiresource Capacity Planning and Multitype Patient Scheduling," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 129-149, January.
    14. Camila Ramos & Alejandro Cataldo & Juan–Carlos Ferrer, 2020. "Appointment and patient scheduling in chemotherapy: a case study in Chilean hospitals," Annals of Operations Research, Springer, vol. 286(1), pages 411-439, March.
    15. Miao Bai & Bjorn Berg & Esra Sisikoglu Sir & Mustafa Y. Sir, 2023. "Partially partitioned templating strategies for outpatient specialty practices," Production and Operations Management, Production and Operations Management Society, vol. 32(1), pages 301-318, January.
    16. Woonghee Tim Huh & Nan Liu & Van-Anh Truong, 2013. "Multiresource Allocation Scheduling in Dynamic Environments," Manufacturing & Service Operations Management, INFORMS, vol. 15(2), pages 280-291, May.
    17. Yongbo Xiao & Yan Zhu, 2016. "Value management of diagnostic equipment with cancelation, no‐show, and emergency patients," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(4), pages 287-304, June.
    18. Schütz, Hans-Jörg & Kolisch, Rainer, 2012. "Approximate dynamic programming for capacity allocation in the service industry," European Journal of Operational Research, Elsevier, vol. 218(1), pages 239-250.
    19. Geng, Na & Xie, Xiaolan & Jiang, Zhibin, 2013. "Implementation strategies of a contract-based MRI examination reservation process for stroke patients," European Journal of Operational Research, Elsevier, vol. 231(2), pages 371-380.
    20. Tugba Cayirli & Pinar Dursun & Evrim D. Gunes, 2019. "An integrated analysis of capacity allocation and patient scheduling in presence of seasonal walk-ins," Flexible Services and Manufacturing Journal, Springer, vol. 31(2), pages 524-561, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:55:y:2017:i:19:p:5609-5631. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.